Do you want to publish a course? Click here

Trex: Learning Execution Semantics from Micro-Traces for Binary Similarity

104   0   0.0 ( 0 )
 Added by Kexin Pei
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Detecting semantically similar functions -- a crucial analysis capability with broad real-world security usages including vulnerability detection, malware lineage, and forensics -- requires understanding function behaviors and intentions. This task is challenging as semantically similar functions can be implemented differently, run on different architectures, and compiled with diverse compiler optimizations or obfuscations. Most existing approaches match functions based on syntactic features without understanding the functions execution semantics. We present Trex, a transfer-learning-based framework, to automate learning execution semantics explicitly from functions micro-traces and transfer the learned knowledge to match semantically similar functions. Our key insight is that these traces can be used to teach an ML model the execution semantics of different sequences of instructions. We thus train the model to learn execution semantics from the functions micro-traces, without any manual labeling effort. We then develop a novel neural architecture to learn execution semantics from micro-traces, and we finetune the pretrained model to match semantically similar functions. We evaluate Trex on 1,472,066 function binaries from 13 popular software projects. These functions are from different architectures and compiled with various optimizations and obfuscations. Trex outperforms the state-of-the-art systems by 7.8%, 7.2%, and 14.3% in cross-architecture, optimization, and obfuscation function matching, respectively. Ablation studies show that the pretraining significantly boosts the function matching performance, underscoring the importance of learning execution semantics.



rate research

Read More

Malware analysis has been extensively investigated as the number and types of malware has increased dramatically. However, most previous studies use end-to-end systems to detect whether a sample is malicious, or to identify its malware family. In this paper, we propose a neural network framework composed of an embedder, an encoder, and a filter to learn malware representations from characteristic execution sequences for malware family classification. The embedder uses BERT and Sent2Vec, state-of-the-art embedding modules, to capture relations within a single API call and among consecutive API calls in an execution trace. The encoder comprises gated recurrent units (GRU) to preserve the ordinal position of API calls and a self-attention mechanism for comparing intra-relations among different positions of API calls. The filter identifies representative API calls to build the malware representation. We conduct broad experiments to determine the influence of individual framework components. The results show that the proposed framework outperforms the baselines, and also demonstrates that considering Sent2Vec to learn complete API call embeddings and GRU to explicitly preserve ordinal information yields more information and thus significant improvements. Also, the proposed approach effectively classifies new malicious execution traces on the basis of similarities with previously collected families.
In real-world classification problems, pairwise supervision (i.e., a pair of patterns with a binary label indicating whether they belong to the same class or not) can often be obtained at a lower cost than ordinary class labels. Similarity learning is a general framework to utilize such pairwise supervision to elicit useful representations by inferring the relationship between two data points, which encompasses various important preprocessing tasks such as metric learning, kernel learning, graph embedding, and contrastive representation learning. Although elicited representations are expected to perform well in downstream tasks such as classification, little theoretical insight has been given in the literature so far. In this paper, we reveal that a specific formulation of similarity learning is strongly related to the objective of binary classification, which spurs us to learn a binary classifier without ordinary class labels---by fitting the product of real-valued prediction functions of pairwise patterns to their similarity. Our formulation of similarity learning does not only generalize many existing ones, but also admits an excess risk bound showing an explicit connection to classification. Finally, we empirically demonstrate the practical usefulness of the proposed method on benchmark datasets.
Binary code similarity detection is a fundamental technique for many security applications such as vulnerability search, patch analysis, and malware detection. There is an increasing need to detect similar code for vulnerability search across architectures with the increase of critical vulnerabilities in IoT devices. The variety of IoT hardware architectures and software platforms requires to capture semantic equivalence of code fragments in the similarity detection. However, existing approaches are insufficient in capturing the semantic similarity. We notice that the abstract syntax tree (AST) of a function contains rich semantic information. Inspired by successful applications of natural language processing technologies in sentence semantic understanding, we propose a deep learning-based AST-encoding method, named ASTERIA, to measure the semantic equivalence of functions in different platforms. Our method leverages the Tree-LSTM network to learn the semantic representation of a function from its AST. Then the similarity detection can be conducted efficiently and accurately by measuring the similarity between two representation vectors. We have implemented an open-source prototype of ASTERIA. The Tree-LSTM model is trained on a dataset with 1,022,616 function pairs and evaluated on a dataset with 95,078 function pairs. Evaluation results show that our method outperforms the AST-based tool Diaphora and the-state-of-art method Gemini by large margins with respect to the binary similarity detection. And our method is several orders of magnitude faster than Diaphora and Gemini for the similarity calculation. In the application of vulnerability search, our tool successfully identified 75 vulnerable functions in 5,979 IoT firmware images.
Program synthesis from input-output examples has been a long-standing challenge, and recent works have demonstrated some success in designing deep neural networks for program synthesis. However, existing efforts in input-output neural program synthesis have been focusing on domain-specific languages, thus the applicability of previous approaches to synthesize code in full-fledged popular programming languages, such as C, remains a question. The main challenges lie in two folds. On the one hand, the program search space grows exponentially when the syntax and semantics of the programming language become more complex, which poses higher requirements on the synthesis algorithm. On the other hand, increasing the complexity of the programming language also imposes more difficulties on data collection, since building a large-scale training set for input-output program synthesis require random program generators to sample programs and input-output examples. In this work, we take the first step to synthesize C programs from input-output examples. In particular, we propose LaSynth, which learns the latent representation to approximate the execution of partially generated programs, even if their semantics are not well-defined. We demonstrate the possibility of synthesizing elementary C code from input-output examples, and leveraging learned execution significantly improves the prediction performance over existing approaches. Meanwhile, compared to the randomly generated ground-truth programs, LaSynth synthesizes more concise programs that resemble human-written code. We show that training on these synthesized programs further improves the prediction performance for both Karel and C program synthesis, indicating the promise of leveraging the learned program synthesizer to improve the dataset quality for input-output program synthesis.
113 - Yuzhou Cao , Lei Feng , Yitian Xu 2021
Weakly supervised learning has drawn considerable attention recently to reduce the expensive time and labor consumption of labeling massive data. In this paper, we investigate a novel weakly supervised learning problem of learning from similarity-confidence (Sconf) data, where we aim to learn an effective binary classifier from only unlabeled data pairs equipped with confidence that illustrates their degree of similarity (two examples are similar if they belong to the same class). To solve this problem, we propose an unbiased estimator of the classification risk that can be calculated from only Sconf data and show that the estimation error bound achieves the optimal convergence rate. To alleviate potential overfitting when flexible models are used, we further employ a risk correction scheme on the proposed risk estimator. Experimental results demonstrate the effectiveness of the proposed methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا