Do you want to publish a course? Click here

Soft Pomeron in light of the LHC correlated data

126   0   0.0 ( 0 )
 Added by Emerson Luna
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The LHC has released precise measurements of elastic proton-proton scattering that provide a unique constraint on the asymptotic behavior of the scattering amplitude at high energies. Recent reanalyses of part of these data indicate that the central values of some forward quantities would be different than initially observed. We introduce correlation information between the original and the reanalyzed data sets in a way suitable for a global fitting analysis of all data. The careful treatment of correlated errors leads to much less stringent limits on the $rho$ uncertainty and sets up the stage for describing the forward data using a scattering amplitude dominated by only crossing-even terms. In the light of these correlated data we determine the parameters of the soft Pomeron from the Regge theory. We use Born-level and eikonalized amplitudes. In the Born-level case we estimate the contribution of the double Pomeron exchange, while in the latter case we investigate the role of the eikonalization in both the one- and two-channel models. The role of the proton-Pomeron vertex form and of the nearest $t$-channel singularity in the Pomeron trajectory receives particular attention. We discuss the implications of our results and present predictions for the total cross section and the $rho$ parameter in proton-proton collisions at LHC and cosmic ray energies.



rate research

Read More

102 - R. Fiore 2015
A Regge pole model for Pomeron-Pomeron total cross section in the resonance region $sqrt{M^2}le$ 5 GeV is presented. The cross section is saturated by direct-channel contributions from the Pomeron as well as from two different $f$ trajectories, accompanied by the isolated f$_0(500)$ resonance which dominates the $sqrt{M^{2}}lesssim 1$ GeV region. A slowly varying background is taken into account. The calculated Pomeron-Pomeron total cross section cannot be measured directly, but is an essential part of central diffractive processes. In preparation of future calculations of central resonance production at the hadron level, and corresponding measurements at the LHC, we normalize the Pomeron-Pomeron cross section at large masses $sigma_{t}^{PP} (sqrt{M^2}rightarrow infty) approx$ 1 mb as suggested by QCD-motivated estimates.
Recent data from LHC13 by the TOTEM Collaboration on $sigma_{tot}$ and $rho$ have indicated disagreement with all the Pomeron model predictions by the COMPETE Collaboration (2002). On the other hand, as recently demonstrated by Martynov and Nicolescu (MN), the new $sigma_{tot}$ datum and the unexpected decrease in the $rho$ value are well described by the maximal Odderon dominance at the highest energies. Here, we discuss the applicability of Pomeron dominance through fits to the textit{most complete set} of forward data from $pp$ and $bar{p}p$ scattering. We consider an analytic parametrization for $sigma_{tot}(s)$ consisting of non-degenerated Regge trajectories for even and odd amplitudes (as in the MN analysis) and two Pomeron components associated with double and triple poles in the complex angular momentum plane. The $rho$ parameter is analytically determined by means of dispersion relations. We carry out fits to $pp$ and $bar{p}p$ data on $sigma_{tot}$ and $rho$ in the interval 5 GeV - 13 TeV (as in the MN analysis). Two novel aspects of our analysis are: (1) the dataset comprises all the accelerator data below 7 TeV and we consider textit{three independent ensembles} by adding: either only the TOTEM data (as in the MN analysis), or only the ATLAS data, or both sets; (2) in the data reductions to each ensemble, uncertainty regions are evaluated through error propagation from the fit parameters, with 90 % CL. We argument that, within the uncertainties, this analytic model corresponding to soft Pomeron dominance, does not seem to be excluded by the textit{complete} set of experimental data presently available.
Universal Extra Dimension (UED) is a well-motivated and well-studied scenario. One of the main motivations is the presence of a dark matter (DM) candidate namely, the lightest level-1 Kaluza-Klein (KK) particle (LKP), in the particle spectrum of UED. The minimal version of UED (mUED) scenario is highly predictive with only two parameters namely, the radius of compactification and cut-off scale, to determine the phenomenology. Therefore, stringent constraint results from the WMAP/PLANCK measurement of DM relic density (RD) of the universe. The production and decays of level-1 quarks and gluons in UED scenarios give rise to multijet final states at the Large Hadron Collider (LHC) experiment. We study the ATLAS search for multijet plus missing transverse energy signatures at the LHC with 13 TeV center of mass energy and 139 inverse femtobarn integrated luminosity. In view of the fact that the DM RD allowed part of mUED parameter-space has already been ruled out by the ATLAS multijet search, we move on to a less restricted version of UED namely, the non-minimal UED (nmUED), with non-vanishing boundary-localized terms (BLTs). The presence of BLTs significantly alters the dark matter as well as the collider phenomenology of nmUED. We obtain stringent bounds on the BLT parameters from the ATLAS multijet plus missing transverse energy search.
A model for Pomeron-Pomeron total cross section in the resonance region $sqrt{M^{2}} le$ 5 GeV is presented. This model is based on Regge poles from the Pomeron and two different $f$ trajectories, and includes the isolated f$_{0}(500)$ resonance in the region $sqrt{M^{2}}lesssim 1$ GeV. A slowly varying background is included. The presented Pomeron-Pomeron cross section is not directly measurable, but is an essential ingredient for calculating exclusive resonance production at the LHC.
The recent data by the TOTEM Collaboration on $sigma_{tot}$ and $rho$ at 13 TeV, have shown agreement with a leading Odderon contribution at the highest energies, as demonstrated in the very recent analysis by Martynov and Nicolescu (MN). In order to investigate the same dataset by means of Pomeron dominance, we introduce a general class of forward scattering amplitude, with leading contributions even under crossing, associated with simple, double and triple poles in the complex angular momentum plane. For the lower energy region, we consider the usual non-degenerated Regge trajectories, with even and odd symmetry. The analytic connection between $sigma_{tot}$ and $rho$ is obtained by means of dispersion relations and we carry out fits to $pp$ and $bar{p}p$ data in the interval $sqrt{s}=5$ GeV - 13 TeV; following MN we consider only the TOTEM data at the LHC energy region. From the fits, we conclude that the general analytic model, as well as some particular cases representing standard parameterizations, are not able to describe satisfactorily the $sigma_{tot}$ and $rho$ data at 13 TeV. Further analyses in course and some perspectives are outlined.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا