We consider limits of $mathcal{N} = 4$ super-Yang-Mills (SYM) theory that approach BPS bounds. These limits result in non-relativistic near-BPS theories that describe the effective dynamics near the BPS bounds and upon quantization are known as Spin Matrix theories. The near-BPS theories can be obtained by reducing $mathcal{N}=4$ SYM on a three-sphere and integrating out the fields that become non-dynamical in the limits. We perform the sphere reduction for the near-BPS limit with $mathrm{SU}(1,2|2)$ symmetry, which has several new features compared to the previously considered cases with $mathrm{SU}(1,1)$ symmetry, including a dynamical gauge field. We discover a new structure in the classical limit of the interaction term. We show that the interaction term is built from certain blocks that comprise an irreducible representation of the $mathrm{SU}(1,2|2)$ algebra. Moreover, the full interaction term can be interpreted as a norm in the linear space of this representation, explaining its features including the positive definiteness. This means one can think of the interaction term as a distance squared from saturating the BPS bound. The $mathrm{SU}(1,1|1)$ near-BPS theory, and its subcases, is seen to inherit these features. These observations point to a way to solve the strong coupling dynamics of these near-BPS theories.