No Arabic abstract
We present a method for composing photorealistic scenes from captured images of objects. Our work builds upon neural radiance fields (NeRFs), which implicitly model the volumetric density and directionally-emitted radiance of a scene. While NeRFs synthesize realistic pictures, they only model static scenes and are closely tied to specific imaging conditions. This property makes NeRFs hard to generalize to new scenarios, including new lighting or new arrangements of objects. Instead of learning a scene radiance field as a NeRF does, we propose to learn object-centric neural scattering functions (OSFs), a representation that models per-object light transport implicitly using a lighting- and view-dependent neural network. This enables rendering scenes even when objects or lights move, without retraining. Combined with a volumetric path tracing procedure, our framework is capable of rendering both intra- and inter-object light transport effects including occlusions, specularities, shadows, and indirect illumination. We evaluate our approach on scene composition and show that it generalizes to novel illumination conditions, producing photorealistic, physically accurate renderings of multi-object scenes.
Implicit neural rendering techniques have shown promising results for novel view synthesis. However, existing methods usually encode the entire scene as a whole, which is generally not aware of the object identity and limits the ability to the high-level editing tasks such as moving or adding furniture. In this paper, we present a novel neural scene rendering system, which learns an object-compositional neural radiance field and produces realistic rendering with editing capability for a clustered and real-world scene. Specifically, we design a novel two-pathway architecture, in which the scene branch encodes the scene geometry and appearance, and the object branch encodes each standalone object conditioned on learnable object activation codes. To survive the training in heavily cluttered scenes, we propose a scene-guided training strategy to solve the 3D space ambiguity in the occluded regions and learn sharp boundaries for each object. Extensive experiments demonstrate that our system not only achieves competitive performance for static scene novel-view synthesis, but also produces realistic rendering for object-level editing.
Besides the COVID-19 pandemic and political upheaval in the US, 2020 was also the year in which neural volume rendering exploded onto the scene, triggered by the impressive NeRF paper by Mildenhall et al. (2020). Both of us have tried to capture this excitement, Frank on a blog post (Dellaert, 2020) and Yen-Chen in a Github collection (Yen-Chen, 2020). This note is an annotated bibliography of the relevant papers, and we posted the associated bibtex file on the repository.
Efficient rendering of photo-realistic virtual worlds is a long standing effort of computer graphics. Modern graphics techniques have succeeded in synthesizing photo-realistic images from hand-crafted scene representations. However, the automatic generation of shape, materials, lighting, and other aspects of scenes remains a challenging problem that, if solved, would make photo-realistic computer graphics more widely accessible. Concurrently, progress in computer vision and machine learning have given rise to a new approach to image synthesis and editing, namely deep generative models. Neural rendering is a new and rapidly emerging field that combines generative machine learning techniques with physical knowledge from computer graphics, e.g., by the integration of differentiable rendering into network training. With a plethora of applications in computer graphics and vision, neural rendering is poised to become a new area in the graphics community, yet no survey of this emerging field exists. This state-of-the-art report summarizes the recent trends and applications of neural rendering. We focus on approaches that combine classic computer graphics techniques with deep generative models to obtain controllable and photo-realistic outputs. Starting with an overview of the underlying computer graphics and machine learning concepts, we discuss critical aspects of neural rendering approaches. This state-of-the-art report is focused on the many important use cases for the described algorithms such as novel view synthesis, semantic photo manipulation, facial and body reenactment, relighting, free-viewpoint video, and the creation of photo-realistic avatars for virtual and augmented reality telepresence. Finally, we conclude with a discussion of the social implications of such technology and investigate open research problems.
Numerical integration is a foundational technique in scientific computing and is at the core of many computer vision applications. Among these applications, neural volume rendering has recently been proposed as a new paradigm for view synthesis, achieving photorealistic image quality. However, a fundamental obstacle to making these methods practical is the extreme computational and memory requirements caused by the required volume integrations along the rendered rays during training and inference. Millions of rays, each requiring hundreds of forward passes through a neural network are needed to approximate those integrations with Monte Carlo sampling. Here, we propose automatic integration, a new framework for learning efficient, closed-form solutions to integrals using coordinate-based neural networks. For training, we instantiate the computational graph corresponding to the derivative of the network. The graph is fitted to the signal to integrate. After optimization, we reassemble the graph to obtain a network that represents the antiderivative. By the fundamental theorem of calculus, this enables the calculation of any definite integral in two evaluations of the network. Applying this approach to neural rendering, we improve a tradeoff between rendering speed and image quality: improving render times by greater than 10 times with a tradeoff of slightly reduced image quality.
We present a new neural representation, called Neural Ray (NeuRay), for the novel view synthesis (NVS) task with multi-view images as input. Existing neural scene representations for solving the NVS problem, such as NeRF, cannot generalize to new scenes and take an excessively long time on training on each new scene from scratch. The other subsequent neural rendering methods based on stereo matching, such as PixelNeRF, SRF and IBRNet are designed to generalize to unseen scenes but suffer from view inconsistency in complex scenes with self-occlusions. To address these issues, our NeuRay method represents every scene by encoding the visibility of rays associated with the input views. This neural representation can efficiently be initialized from depths estimated by external MVS methods, which is able to generalize to new scenes and achieves satisfactory rendering images without any training on the scene. Then, the initialized NeuRay can be further optimized on every scene with little training timing to enforce spatial coherence to ensure view consistency in the presence of severe self-occlusion. Experiments demonstrate that NeuRay can quickly generate high-quality novel view images of unseen scenes with little finetuning and can handle complex scenes with severe self-occlusions which previous methods struggle with.