Do you want to publish a course? Click here

Atiyah sequences and connections on principal bundles over differentiable stacks

125   0   0.0 ( 0 )
 Added by Praphulla Koushik
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We construct and study general connections on Lie groupoids and differentiable stacks as well as on principal bundles over them using Atiyah sequences associated to transversal tangential distributions.



rate research

Read More

Let $mathbb{X}=[X_1rightrightarrows X_0]$ be a Lie groupoid equipped with a connection, given by a smooth distribution $mathcal{H} subset T X_1$ transversal to the fibers of the source map. Under the assumption that the distribution $mathcal{H}$ is integrable, we define a version of de Rham cohomology for the pair $(mathbb{X}, mathcal{H})$, and we study connections on principal $G$-bundles over $(mathbb{X}, mathcal{H})$ in terms of the associated Atiyah sequence of vector bundles. We also discuss associated constructions for differentiable stacks. Finally, we develop the corresponding Chern-Weil theory and describe characteristic classes of principal $G$-bundles over a pair $(mathbb{X}, mathcal{H})$.
In this paper we introduce a notion of parallel transport for principal bundles with connections over differentiable stacks. We show that principal bundles with connections over stacks can be recovered from their parallel transport thereby extending the results of Barrett, Caetano and Picken, and Schreiber and Waldof from manifolds to stacks. In the process of proving our main result we simplify Schreiber and Waldorfs definition of a transport functor for principal bundles with connections over manifolds and provide a more direct proof of the correspondence between principal bundles with connections and transport functors.
We investigate principal bundles over a root stack. In case of dimension one, we generalize the criterion of Weil and Atiyah for a principal bundle to have an algebraic connection.
114 - Konrad Waldorf 2016
For a strict Lie 2-group, we develop a notion of Lie 2-algebra-valued differential forms on Lie groupoids, furnishing a differential graded-commutative Lie algebra equipped with an adjoint action of the Lie 2-group and a pullback operation along Morita equivalences between Lie groupoids. Using this notion, we define connections on principal 2-bundles as Lie 2-algebra-valued 1-forms on the total space Lie groupoid of the 2-bundle, satisfying a condition in complete analogy to connections on ordinary principal bundles. We carefully treat various notions of curvature, and prove a classification result by the non-abelian differential cohomology of Breen-Messing. This provides a consistent, global perspective to higher gauge theory.
We introduce and study (strict) Schottky G-bundles over a compact Riemann surface X, where G is a connected reductive algebraic group. Strict Schottky representations are shown to be related to branes in the moduli space of G-Higgs bundles over X, and we prove that all Schottky $G$-bundles have trivial topological type. Generalizing the Schottky moduli map introduced in Florentino to the setting of principal bundles, we prove its local surjectivity at the good and unitary locus. Finally, we prove that the Schottky map is surjective onto the space of flat bundles for two special classes: when G is an abelian group over an arbitrary X, and the case of a general G-bundle over an elliptic curve.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا