No Arabic abstract
Efficient frequency conversion of photons has important applications in optical quantum technology because the frequency range suitable for photon manipulation and communication usually varies widely. Recently, an efficient frequency conversion system using a double-$Lambda$ four-wave mixing (FWM) process based on electromagnetically induced transparency (EIT) has attracted considerable attention because of its potential to achieve a nearly 100% conversion efficiency (CE). To obtain such a high CE, the spontaneous emission loss in this resonant-type FWM system must be suppressed considerably. A simple solution is to arrange the applied laser fields in a backward configuration. However, the phase mismatch due to this configuration can cause a significant decrease in CE. Here, we demonstrate that the phase mismatch can be effectively compensated by introducing the phase shift obtained by two-photon detuning. Under optimal conditions, we observe a wavelength conversion from 780 to 795 nm with a maximum CE of 91.2(6)% by using this backward FWM system at an optical depth of 130 in cold rubidium atoms. The current work represents an important step toward achieving low-loss, high-fidelity EIT-based quantum frequency conversion.
A setup to frequency-convert an arbitrary image encoded in the spatial profile of a probe field onto a signal field using four-wave mixing in a thermal atom vapor is proposed. The atomic motion is exploited to cancel diffraction of both signal and probe fields simultaneously. We show that an incoherent probe field can be used to enhance the transverse momentum bandwidth which can be propagated without diffraction, such that smaller structures with higher spatial resolution can be transmitted. It furthermore compensate linear absorption with non-linear gain, to improve the four-wave mixing performance since the propagation dynamics of the various field intensities is favorably modified.
Squeezed states of light have received renewed attention due to their applicability to quantum-enhanced sensing. To take full advantage of their reduced noise properties to enhance atomic-based sensors, it is necessary to generate narrowband near or on atomic resonance single-mode squeezed states of light. We have previously generated bright two-mode squeezed states of light, or twin beams, that can be tuned to resonance with the D1 line of $^{87}$Rb with a non-degenerate four-wave mixing (FWM) process in a double-lambda configuration in a $^{85}$Rb vapor cell. Here we report on the use of feedforward to transfer the amplitude quantum correlations present in the twin beams to a single beam for the generation of single-mode amplitude squeezed light. With this technique we obtain a single-mode squeezed state with a squeezing level of $-2.9pm0.1$ dB when it is tuned off-resonance and a level of $-2.0pm 0.1$ dB when it is tuned on resonance with the D1 $F=2$ to $F=2$ transition of $^{87}$Rb.
We show that a simple scheme based on nondegenerate four-wave mixing in a hot atomic vapor behaves like a near-perfect phase-insensitive optical amplifier, which can generate bright twin beams with a measured quantum noise reduction in the intensity difference of more than 8 dB, close to the best optical parametric amplifiers and oscillators. The absence of a cavity makes the system immune to external perturbations, and the strong quantum noise reduction is observed over a large frequency range.
Four-wave mixing (4WM) is a known source of intense non-classical twin beams. It can be generated when an intense laser beam (the pump) and a weak laser beam (the seed) overlap in a $chi^{(3)}$ medium (here cesium vapor), with frequencies close to resonance with atomic transitions. The twin beams generated by 4WM have frequencies naturally close to atomic transitions, and can be intense (gain $gg 1$) even in the CW pump regime, which is not the case for PDC $chi^{(2)}$ phenomenon in non-linear crystals. So, 4WM is well suited for atom-light interaction and atom-based quantum protocols. Here we present the first realization of a source of 4-wave mixing exploiting $D_2$ line of Cesium atoms.
Squeezed states of light have found their way into a number of applications in quantum-enhanced metrology due to their reduced noise properties. In order to extend such an enhancement to metrology experiments based on atomic ensembles, an efficient light-atom interaction is required. Thus, there is a particular interest in generating narrow-band squeezed light that is on atomic resonance. This will make it possible not only to enhance the sensitivity of atomic based sensors, but also to deterministically entangle two distant atomic ensembles. We generate bright two-mode squeezed states of light, or twin beams, with a non-degenerate four-wave mixing (FWM) process in hot $^{85}$Rb in a double-lambda configuration. Given the proximity of the energy levels in the D1 line of $^{85}$Rb and $^{87}$Rb, we are able to operate the FWM in $^{85}$Rb in a regime that generates two-mode squeezed states in which both modes are simultaneously on resonance with transitions in the D1 line of $^{87}$Rb, one mode with the $F=2$ to $F=2$ transition and the other one with the $F=1$ to $F=1$ transition. For this configuration, we obtain an intensity difference squeezing level of $-3.5$ dB. Moreover, the intensity difference squeezing increases to $-5.4$ dB and $-5.0$ dB when only one of the modes of the squeezed state is resonant with the D1 $F=2$ to $F=2$ or $F=1$ to $F=1$ transition of $^{87}$Rb, respectively.