Do you want to publish a course? Click here

Bounds for the zeros of Collatz polynomials, with necessary and sufficient strictness conditions

83   0   0.0 ( 0 )
 Added by Matt Hohertz
 Publication date 2020
  fields
and research's language is English
 Authors Matt Hohertz




Ask ChatGPT about the research

In a previous work, we introduced the Collatz polynomials; these are the polynomials $left[P_N(z)right]_{Ninmathbb{N}}$ such that $left[z^0right]P_N = N$ and $left[z^{k+1}right]P_N = cleft(left[z^kright]P_Nright)$, where $c:mathbb{N}rightarrow mathbb{N}$ is the Collatz function $1rightarrow 0$, $2nrightarrow n$, $2n+1rightarrow 3n+2$ (for example, $P_5(z) = 5 + 8z + 4z^2 + 2z^3 + z^4$). In this article, we prove that all zeros of $P_N$ (which we call Collatz zeros) lie in an annulus centered at the origin, with outer radius 2 and inner radius a function of the largest odd iterate of $N$. Moreover, using an extension of the Enestrom-Kakeya Theorem, we prove that $|z| = 2$ for a root of $P_N$ if and only if the Collatz trajectory of $N$ has a certain form; as a corollary, the set of $N$ for which our upper bound is an equality is sparse in $mathbb{N}$. Inspired by these results, we close with some questions for further study.



rate research

Read More

The Collatz Conjecture (also known as the 3x+1 Problem) proposes that the following algorithm will, after a certain number of iterations, always yield the number 1: given a natural number, multiply by three and add one if the number is odd, halve the resulting number, then repeat. In this article, for each $N$ for which the Collatz Conjecture holds we define the $N^{th}$ Collatz polynomial to be the monic polynomial with constant term $N$ and $k^{th}$ term (for $k > 1$) the $k^{th}$ iterate of $N$ under the Collatz function. In particular, we bound the moduli of the roots of these polynomials, prove theorems on when they have rational integer roots, and suggest further applications and avenues of research.
In this paper we shall use the boundary Schwarz lemma of Osserman to obtain some generalizations and refinements of some well known results concerning the maximum modulus of the polynomials with restricted zeros due to Turan, Dubinin and others.
We formulate explicitly the necessary and sufficient conditions for the local invertibility of a field transformation involving derivative terms. Our approach is to apply the method of characteristics of differential equations, by treating such a transformation as differential equations that give new variables in terms of original ones. The obtained results generalise the well-known and widely used inverse function theorem. Taking into account that field transformations are ubiquitous in modern physics and mathematics, our criteria for invertibility will find many useful applications.
In this contribution we are interested in proving that a given observation-driven model is identifiable. In the case of a GARCH(p, q) model, a simple sufficient condition has been established in [1] for showing the consistency of the quasi-maximum likelihood estimator. It turns out that this condition applies for a much larger class of observation-driven models, that we call the class of linearly observation-driven models. This class includes standard integer valued observation-driven time series, such as the log-linear Poisson GARCH or the NBIN-GARCH models.
70 - Evgenija D. Popova 2021
Matrix regularity is a key to various problems in applied mathematics. The sufficient conditions, used for checking regularity of interval parametric matrices, usually fail in case of large parameter intervals. We present necessary and sufficient conditions for regularity of interval parametric matrices in terms of boundary parametric hypersurfaces, parametric solution sets, determinants, real spectral radiuses. The initial n-dimensional problem involving K interval parameters is replaced by numerous problems involving 1<= t <= min(n-1, K) interval parameters, in particular t=1 is most attractive. The advantages of the proposed methodology are discussed along with its application for finding the interval hull solution to interval parametric linear system and for determining the regularity radius of an interval parametric matrix.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا