No Arabic abstract
Feedback from AGN is thought to be key in shaping the life cycle of their host galaxies by regulating star-formation activity. Therefore, to understand the impact of AGN on star formation, it is essential to trace the molecular gas out of which stars form. In this paper we present the first systematic study of the CO properties of AGN hosts at z~2 for a sample of 27 X-ray selected AGN spanning two orders of magnitude in AGN bolometric luminosity (Lbol= 10^44.7-10^46.9 erg/s) by using ALMA Band 3 observations of the CO(3-2) transition (~1 angular resolution). To search for evidence of AGN feedback on the CO properties of the host galaxies, we compared our AGN with a sample of inactive (i.e., non-AGN) galaxies from the PHIBSS survey with similar redshift, stellar masses, and SFRs. We used the same CO transition as a consistent proxy for the gas mass for the two samples in order to avoid systematics involved when assuming conversion factors. By adopting a Bayesian approach to take upper limits into account, we analyzed CO luminosities as a function of stellar masses and SFRs, as well as the ratio LCO(3-2)/M* (proxy for the gas fraction). The two samples show statistically consistent trends in the LCO(3-2)-Lfir and LCO(3-2)-M* planes. However, there are indications that AGN feature lower CO(3-2) luminosities (0.4-0.7 dex) than inactive galaxies at the 2-3sigma level when we focus on the subset of parameters where the results are better constrained and on the distribution of the mean LCO(3-2)/M*. Therefore, even by conservatively assuming the same excitation factor r31, we would find lower molecular gas masses in AGN, and assuming higher r31 would exacerbate this difference. We interpret our result as a hint of the potential effect of AGN activity (e.g., radiation and outflows), which may be able to heat, excite, dissociate, and/or deplete the gas reservoir of the host galaxies. (abridged)
We present observations of CO(3-2) and $^{13}$CO(3-2) emission near the supernebula in the dwarf galaxy NGC 5253, which contains one of the best examples of a potential globular cluster in formation. The 0.3 resolution images reveal an unusual molecular cloud, Cloud D1, coincident with the radio-infrared supernebula. The ~6-pc diameter cloud has a linewidth, $Delta$ v = 21.7 km/s, that reflects only the gravitational potential of the star cluster residing within it. The corresponding virial mass is 2.5 x 10$^5$ M$_odot$. The cluster appears to have a top-heavy initial mass function, with $M_{low}$~1-2 M$_odot$. Cloud D1 is optically thin in CO(3-2) probably because the gas is hot. Molecular gas mass is very uncertain but constitutes < 35% of the dynamical mass within the cloud boundaries. In spite of the presence of an estimated ~1500-2000 O stars within the small cloud, the CO appears relatively undisturbed. We propose that Cloud D1 consists of molecular clumps or cores, possibly star-forming, orbiting with more evolved stars in the core of the giant cluster.
We report the source size distribution, as measured by ALMA millimetric continuum imaging, of a sample of 13 AzTEC-selected submillimeter galaxies (SMGs) at z_photo ~ 3-6. Their infrared luminosities and star-formation rates (SFR) are L_IR ~ 2-6 x 10^12 L_sun and ~ 200-600 M_sun yr-1, respectively. The size of z ~ 3-6 SMGs ranges from 0.10 to 0.38 with a median of 0.20+0.03-0.05 (FWHM), corresponding to a median circularized effective radius (Rc,e) of 0.67+0.13-0.14 kpc, comparable to the typical size of the stellar component measured in compact quiescent galaxies at z ~ 2 (cQGs) --- R ~ 1 kpc. The median surface SFR density of our z ~ 3-6 SMGs is 100+42-26 M_sun yr-1 kpc-2, comparable to that seen in local merger-driven (U)LIRGsrather than in extended disk galaxies at low and high redshifts. The discovery of compact starbursts in z >~ 3 SMGs strongly supports a massive galaxy formation scenario wherein z ~ 3-6 SMGs evolve into the compact stellar components of z ~ 2 cQGs. These cQGs are then thought to evolve into the most massive ellipticals in the local Universe, mostly via dry mergers. Our results thus suggest that z >~ 3 SMGs are the likely progenitors of massive local ellipticals, via cQGs, meaning that we can now trace the evolutionary path of the most massive galaxies over a period encompassing ~ 90% of the age of the Universe.
Context. Outflows provide indirect means to get an insight on diverse star formation associated phenomena. On scales of individual protostellar cores, outflows combined with intrinsic core properties can be used to study the mass accretion/ejection process of heavily embedded protostellar sources. Methods. An area comprising 460x230 of the Serpens cloud core has been mapped in 12 CO J = 3to 2 with the HARP-B heterodyne array at the James Clerk Maxwell Telescope; J = 3to 2 observations are more sensitive tracers of hot outflow gas than lower J CO transitions; combined with the high sensitivity of the HARP-B receptors outflows are sharply outlined, enabling their association with individual protostellar cores. Results. Most of ~20 observed outflows are found to be associated with known protostellar sources in bipolar or unipolar configurations. All but two outflow/core pairs in our sample tend to have a projected orientation spanning roughly NW-SE. The overall momentum driven by outflows in Serpens lies between 3.2 and 5.1 x 10^(-1) Modot km s^(-1), the kinetic energy from 4.3 to 6.7 x 10^(43) erg and momentum flux is between 2.8 and 4.4 x 10^(-4) Modot km s^(-1) yr^(-1). Bolometric luminosities of protostellar cores based on Spitzer photometry are found up to an order of magnitude lower than previous estimations derived with IRAS/ISO data. Conclusions. We confirm the validity of the existing correlations between the momentum flux and bolometric luminosity of Class I sources for the homogenous sample of Serpens, though we suggest that they should be revised by a shift to lower luminosities. All protostars classified as Class 0 sources stand well above the known Class I correlations, indicating a decline in momentum flux between the two classes.
We present the results of CO(J=3-2) on-the-fly mappings of two nearby non-barred spiral galaxies NGC 628 and NGC 7793 with the Atacama Submillimeter Telescope Experiment at an effective angular resolution of 25. We successfully obtained global distributions of CO(J=3-2) emission over the entire disks at a sub-kpc resolution for both galaxies. We examined the spatially-resolved (sub-kpc) relationship between CO(J=3-2) luminosities (LCO(3-2)) and infrared (IR) luminosities (LIR) for NGC 628, NGC 7793, and M 83, and compared it with global luminosities of JCMT Nearby Galaxy Legacy Survey sample. We found a striking linear LCO(3-2)-LIR correlation over the 4 orders of magnitude, and the correlation is consistent even with that for ultraluminous infrared galaxies and submillimeter selected galaxies. In addition, we examined the spatially-resolved relationship between CO(J=3-2) intensities (ICO(3-2)) and extinction-corrected star formation rates (SFRs) for NGC 628, NGC 7793, and M 83, and compared it with that for GMCs in M 33 and 14 nearby galaxy centers. We found a linear ICO(3-2)-SFR correlation with 1 dex scatter. We conclude that the CO(J=3-2) star formation law (i.e., linear LCO(3-2)-LIR and ICO(3-2)-SFR correlations) is universally applicable to various types and spatial scales of galaxies, from spatially-resolved nearby galaxy disks to distant IR-luminous galaxies, within 1 dex scatter.
We used the Atacama Large Millimeter/submillimeter Array (ALMA) to map $^{12}$CO($J$ = 1-0), $^{12}$CO($J$ = 2-1), $^{12}$CO($J$ = 3-2), $^{13}$CO($J$ = 2-1), and [CI]($^3P_1$-$^3P_0$) emission lines around the type 1 active galactic nucleus (AGN) of NGC 7469 ($z = 0.0164$) at $sim 100$ pc resolutions. The CO lines are bright both in the circumnuclear disk (central $sim 300$ pc) and the surrounding starburst (SB) ring ($sim 1$ kpc diameter), with two bright peaks on either side of the AGN. By contrast, the [CI]($^3P_1$-$^3P_0$) line is strongly peaked on the AGN. Consequently, the brightness temperature ratio of [CI]($^3P_1$-$^3P_0$) to $^{13}$CO(2-1) is $sim 20$ at the AGN, as compared to $sim 2$ in the SB ring. Our local thermodynamic equilibrium (LTE) and non-LTE models indicate that the enhanced line ratios (or CI enhancement) are due to an elevated C$^0$/CO abundance ratio ($sim 3-10$) and temperature ($sim 100-500$ K) around the AGN as compared to the SB ring (abundance ratio $sim 1$, temperature $lesssim 100$ K), which accords with the picture of the X-ray-dominated Region (XDR). Based on dynamical modelings, we also provide CO(1-0)-to- and [CI]($^3P_1$-$^3P_0$)-to-molecular mass conversion factors at the central $sim 100$ pc of this AGN as $alpha_{rm CO} = 4.1$ and $alpha_{rm CI} = 4.4~M_odot$ (K km s$^{-1}$ pc$^2$)$^{-1}$, respectively. Our results suggest that the CI enhancement is potentially a good marker of AGNs that could be used in a new submillimeter diagnostic method toward dusty environments.