No Arabic abstract
Traditional electronic devices are well-known to improve in speed and energy-efficiency as their dimensions are reduced to the nanoscale. However, this scaling behavior remains unclear for nonlinear dynamical circuit elements, such as Mott neuron-like spiking oscillators, which are of interest for bio-inspired computing. Here we show that shrinking micrometer-sized VO2 oscillators to sub-100 nm effective sizes, achieved using a nanogap cut in a metallic carbon nanotube (CNT) electrode, does not guarantee faster spiking. However, an additional heat source such as Joule heating from the CNT, in combination with small size and heat capacity (defined by the narrow volume of VO2 whose insulator-metal transition is triggered by the CNT), can increase the spiking frequency by ~1000x due to an electro-thermal bifurcation in the nonlinear dynamics. These results demonstrate that nonlinear dynamical switches operate in a complex phase space which can be controlled by careful electro-thermal design, offering new tuning parameters for designing future biomimetic electronics.
Strongly correlated materials that exhibit an insulator-metal transition are key candidates in the search for new computing platforms. Understanding the pathways and timescales underlying the electrically-driven insulator-metal transition is crucial for uncovering the fundamental limits of device operation. Using stroboscopic electron diffraction, we perform synchronized time-resolved measurements of atomic motions and electronic transport in operating vanadium dioxide switches. We discover an electrically-triggered, isostructural state that forms transiently on microsecond timescales, stabilized by local heterogeneities and interfacial interactions between the equilibrium phases. This metastable phase bears striking similarity to that formed under photoexcitation within picoseconds, suggesting a universal transformation pathway across eight orders of magnitude of timescale. Our results establish a new route for uncovering non-equilibrium and metastable phases in correlated materials, and open avenues for engineering novel dynamical behavior in nanoelectronics.
Time-resolved scanning Kerr microscopy has been used to directly image the magnetization dynamics of nano-contact (NC) spin-torque vortex oscillators (STVOs) when phase-locked to an injected microwave (RF) current. The Kerr images reveal free layer magnetization dynamics that extend outside the NC footprint, where they cannot be detected electrically, but which are crucial to phase-lock STVOs that share common magnetic layers. For a single NC, dynamics were observed not only when the STVO frequency was fully locked to that of the RF current, but also for a partially locked state characterized by periodic changes in the core trajectory at the RF frequency. For a pair of NCs, images reveal the spatial character of dynamics that electrical measurements show to have enhanced amplitude and reduced linewidth. Insight gained from these images may improve understanding of the conditions required for mutual phase-locking of multiple STVOs, and hence enhanced microwave power emission.
The heat flux autocorrelation functions of carbon nanotubes (CNTs) with different radius and lengths is calculated using equilibrium molecular dynamics. The thermal conductance of CNTs is also calculated using the Green-Kubo relation from the linear response theory. By pointing out the ambiguity in the cross section definition of single wall CNTs, we use the thermal conductance instead of conductivity in calculations and discussions. We find that the thermal conductance of CNTs diverges with the CNT length. After the analysis of vibrational density of states, it can be concluded that more low frequency vibration modes exist in longer CNTs, and they effectively contribute to the divergence of thermal conductance.
The growth of wafer-scale and uniform monoclinic VO2 film was a challenge if considering the multivalent vanadium atom and the various phase structures of VO2 compound. Directly oxidizing metallic vanadium film in oxygen gas seemed to be an easy way, while the oxidation parameters were extremely sensitive due to the critical preparation window. Here we proposed a facile thermal oxidation by water-vapor to produce wafer-scale VO2 films with high quality. Results indicated that by using the water-vapor oxidant, the temperature window for VO2 growth was greatly broadened. In addition, the obtained wafer-size VO2 film showed very uniform surface and sharp resistance change. The chemical reaction routes with water-vapor were calculated, which favored the VO2 film growth. Our results not only demonstrated that the water-vapor could be used as a modest oxidizing agent, but also showed the unique advantage for large size VO2 film preparation.
We studied the size distribution and its scaling behavior of self-assembled InAlAs/AlGaAs quantum dots (QDs) grown on GaAs with the Stranski-Krastanov (SK) mode by molecular beam epitaxy (MBE), at both 480{deg}C and 510{deg}C, as a function of InAlAs coverage. A scaling function of the volume was found for the first time in ternary alloy QDs. The function was similar to that of InAs/GaAs QDs, which agreed with the scaling function for the two-dimensional submonolayer homoepitaxy simulation with a critical island size of i = 1. However, a character of i = 0 was also found as a tail in the large volume.