Origin and dynamical evolution of the asteroid belt


Abstract in English

The asteroid belt was dynamically shaped during and after planet formation. Despite representing a broad ring of stable orbits, the belt contains less than one one-thousandth of an Earth mass. The asteroid orbits are dynamically excited with a wide range in eccentricity and inclination and their compositions are diverse, with a general trend toward dry objects in the inner belt and more water-rich objects in the outer belt. Here we review models of the asteroid belts origins and dynamical history. The classical view is that the belt was born with several Earth masses in planetesimals, then strongly depleted. However, it is possible that very few planetesimals ever formed in the asteroid region and that the belts story is one of implantation rather than depletion. A number of processes may have implanted asteroids from different regions of the Solar System, dynamically removed them, and excited their orbits. During the gaseous disk phase these include the effects of giant planet growth and migration and sweeping secular resonances. After the gaseous disk phase these include scattering from resident planetary embryos, chaos in the giant planets orbits, the giant planet instability, and long-term dynamical evolution. Different global models for Solar System formation imply contrasting dynamical histories of the asteroid belt. Vesta and Ceres may have been implanted from opposite regions of the Solar System -- Ceres from the Jupiter-Saturn region and Vesta from the terrestrial planet region -- and could therefore represent very different formation conditions.

Download