Do you want to publish a course? Click here

The quantum cosmological tilt and the origin of dark matter

108   0   0.0 ( 0 )
 Added by Raul Jimenez
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A promising candidate for cold dark matter is primordial black holes (PBH) formed from strong primordial quantum fluctuations. A necessary condition for the formation of PBHs is a change of sign in the tilt governing the anomalous scale invariance of the power spectrum from red at large scales into blue at small scales. Non-perturbative information on the dependence of the power spectrum tilt on energy scale can be extracted from the quantum Fisher information measuring the energy dependence of the quantum phases defining the de Sitter vacua. We show that this non-perturbative quantum tilt goes from a red tilted phase, at large scales, into a blue tilted phase at small scales converging to $n_s=2$ in the UV. This allows the formation of PBHs in the range of masses $lesssim 10^{20} gr$.



rate research

Read More

179 - Cesar Gomez , Raul Jimenez 2020
The most robust prediction of inflationary cosmology is the existence of a red tilt for the spectrum of curvature fluctuations that is experimentally of order $0.04$. The tilt is derived solving the exact equation for quantum fluctuations in a quasi de Sitter background defined by a equation of state $epsilon equiv frac{(p+rho)}{rho}$ with $epsilon$ small but non vanishing. The experimental data selects among the different quasi de Sitter inflaton potentials. The origin of the lack of scale invariance associated with the tilt is however classical in essence and parametrized by the slow roll of the inflaton potential. Here we present a purely quantum mechanical and model independent derivation of the tilt. This derivation is based on two basic observations: first, the correlator for gauge invariant variables is related to the {it quantum Fisher function} measuring the quantum dependence of the family of pure de Sitter vacua on the energy scale parameter; second, this quantum Fisher function has a non vanishing scale dependent red tilt that, at the energy scales of physical interest, fits the effective quasi de Sitter prediction as well as the experimental value. This is a result that is model independent and only based on the quantum features of the family of de Sitter vacua.
We provide strong evidence for universality of the inflationary field range: given an accurate measurement of $(n_s,r)$, one can infer $Delta phi$ in a model-independent way in the sub-Planckian regime for a range of universality classes of inflationary models. Both the tensor-to-scalar ratio as well as the spectral tilt are essential for the field range. Given the Planck constraints on $n_s$, the Lyth bound is strengthened by two orders of magnitude: whereas the original bound gives a sub-Planckian field range for $r lesssim 2 cdot 10^{-3}$, we find that $n=0.96$ brings this down to $r lesssim 2 cdot 10^{-5}$.
416 - Sang Pyo Kim , Seoktae Koh 2008
We study the quantum remnant of a scalar field protected by the uncertainty principle. The quantum remnant that survived the later stage of evolution of the universe may provide dark energy and dark matter depending on the potential. Though the quantum remnant shares some useful property of complex scalar field (spintessence) dark energy model, % However although it avoids the formation of Q-ball, quantum fluctuations are still unstable to the linear perturbations for $V sim phi^q$ with $q<1$ as in the spintessence model.
We introduce a novel method to circumvent Weinbergs no-go theorem for self-tuning the cosmological vacuum energy: a Lorentz-violating finite-temperature superfluid can counter the effects of an arbitrarily large cosmological constant. Fluctuations of the superfluid result in the graviton acquiring a Lorentz-violating mass and we identify a unique class of theories that are pathology free, phenomenologically viable, and do not suffer from instantaneous modes. This new and hitherto unidentified phase of massive gravity propagates the same degrees of freedom as general relativity with an additional Lorentz-violating scalar that is introduced by higher-derivative operators in a UV insensitive manner. The superfluid is therefore a consistent infrared modification of gravity. We demonstrate how the superfluid can degravitate a cosmological constant and discuss its phenomenology.
Much of the structure of cosmological correlators is controlled by their singularities, which in turn are fixed in terms of flat-space scattering amplitudes. An important challenge is to interpolate between the singular limits to determine the full correlators at arbitrary kinematics. This is particularly relevant because the singularities of correlators are not directly observable, but can only be accessed by analytic continuation. In this paper, we study rational correlators, including those of gauge fields, gravitons, and the inflaton, whose only singularities at tree level are poles and whose behavior away from these poles is strongly constrained by unitarity and locality. We describe how unitarity translates into a set of cutting rules that consistent correlators must satisfy, and explain how this can be used to bootstrap correlators given information about their singularities. We also derive recursion relations that allow the iterative construction of more complicated correlators from simpler building blocks. In flat space, all energy singularities are simple poles, so that the combination of unitarity constraints and recursion relations provides an efficient way to bootstrap the full correlators. In many cases, these flat-space correlators can then be transformed into their more complex de Sitter counterparts. As an example of this procedure, we derive the correlator associated to graviton Compton scattering in de Sitter space, though the methods are much more widely applicable.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا