Do you want to publish a course? Click here

Relaxed Peephole Optimization: A Novel Compiler Optimization for Quantum Circuits

153   0   0.0 ( 0 )
 Added by Ji Liu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a novel quantum compiler optimization, named relaxed peephole optimization (RPO) for quantum computers. RPO leverages the single-qubit state information that can be determined statically by the compiler. We define that a qubit is in a basis state when, at a given point in time, its state is either in the X-, Y-, or Z-basis. When basis qubits are used as inputs to quantum gates, there exist opportunities for strength reduction, which replaces quantum operations with equivalent but less expensive ones. Compared to the existing peephole optimization for quantum programs, the difference is that our proposed optimization does not require an identical unitary matrix, thereby named `relaxed peephole optimization. We also extend our approach to optimize the quantum gates when some input qubits are in known pure states. Both optimizations, namely the Quantum Basis-state Optimization (QBO) and the Quantum Pure-state Optimization (QPO), are implemented in the IBMs Qiskit transpiler. Our experimental results show that our proposed optimization pass is fast and effective. The circuits optimized with our compiler optimizations obtain up to 18.0% (11.7% on average) fewer CNOT gates and up to 8.2% (7.1% on average) lower transpilation time than that of the most aggressive optimization level in the Qiskit compiler. When running on real quantum computers, the success rates of 3-qubit quantum phase estimation algorithm improve by 2.30X due to the reduced gate counts.



rate research

Read More

575 - Gushu Li , Anbang Wu , Yunong Shi 2021
The quantum simulation kernel is an important subroutine appearing as a very long gate sequence in many quantum programs. In this paper, we propose Paulihedral, a block-wise compiler framework that can deeply optimize this subroutine by exploiting high-level program structure and optimization opportunities. Paulihedral first employs a new Pauli intermediate representation that can maintain the high-level semantics and constraints in quantum simulation kernels. This naturally enables new large-scale optimizations that are hard to implement at the low gate-level. In particular, we propose two technology-independent instruction scheduling passes, and two technology-dependent code optimization passes which reconcile the circuit synthesis, gate cancellation, and qubit mapping stages of the compiler. Experimental results show that Paulihedral can outperform state-of-the-art compiler infrastructures in a wide-range of applications on both near-term superconducting quantum processors and future fault-tolerant quantum computers.
Quilc is an open-source, optimizing compiler for gate-based quantum programs written in Quil or QASM, two popular quantum programming languages. The compiler was designed with attention toward NISQ-era quantum computers, specifically recognizing that each quantum gate has a non-negligible and often irrecoverable cost toward a programs successful execution. Quilcs primary goal is to make authoring quantum software a simpler exercise by making architectural details less burdensome to the author. Using Quilc allows one to write programs faster while usually not compromising---and indeed sometimes improving---their execution fidelity on a given hardware architecture. In this paper, we describe many of the principles behind Quilcs design, and demonstrate the compiler with various examples.
120 - Yulong Dong , Xiang Meng , Lin Lin 2019
Quantum variational algorithms have garnered significant interest recently, due to their feasibility of being implemented and tested on noisy intermediate scale quantum (NISQ) devices. We examine the robustness of the quantum approximate optimization algorithm (QAOA), which can be used to solve certain quantum control problems, state preparation problems, and combinatorial optimization problems. We demonstrate that the error of QAOA simulation can be significantly reduced by robust control optimization techniques, specifically, by sequential convex programming (SCP), to ensure error suppression in situations where the source of the error is known but not necessarily its magnitude. We show that robust optimization improves both the objective landscape of QAOA as well as overall circuit fidelity in the presence of coherent errors and errors in initial state preparation.
282 - Bujiao Wu , Xiaoyu He , Shuai Yang 2019
CNOT circuit is the key gadget for entangling qubits in quantum computing systems. However, the qubit connectivity of noisy intermediate-scale quantum (NISQ) devices is constrained by their topological structures. To improve the performance of CNOT circuits on NISQ devices, we investigate the optimization of the size/depth of CNOT circuits under topological constraints. We firstly present a method that can optimize the size of any $n$-qubit CNOT circuit to less than $2n^2$ on any connected graph, which is optimal for sparsely connected structures. The simulation experiment shows that our method performs better than state-of-the-art results. Specifically, we present two detailed examples to illustrate the applicability of our algorithm. Furthermore, for the future device with a denser structure, we give a better optimization method that achieves $O(n^2/log delta)$ size on a graph with the minimum degree $delta$, which is optimal on the regular graph. Secondly, for the grid structure, which is commonly used in current quantum devices, we demonstrate that the depth of any $n$-qubit CNOT circuit can be optimized to be linear in $n$ with certain ancillary qubits (ancillas). Our experimental results indicate this method has significant improvements compared with all of the existing methods. We further implement the two circuits commonly used in quantum variational algorithms and quantum chemistry on the 5-qubit IBMQ devices by leverage of our optimization algorithm, the experimental results show the optimized circuit has far less error when there exists noise compared to IBM mapping method.
We provide a simple framework for the synthesis of quantum circuits based on a numerical optimization algorithm. This algorithm is used in the context of the trapped-ions technology. We derive theoretical lower bounds for the number of quantum gates required to implement any quantum algorithm. Then we present numerical experiments with random quantum operators where we compute the optimal parameters of the circuits and we illustrate the correctness of the theoretical lower bounds. We finally discuss the scalability of the method with the number of qubits.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا