Divisibility of Spheres with Measurable Pieces


Abstract in English

For an $r$-tuple $(gamma_1,ldots,gamma_r)$ of special orthogonal $dtimes d$ matrices, we say the Euclidean $(d-1)$-dimensional sphere $S^{d-1}$ is $(gamma_1,ldots,gamma_r)$-divisible if there is a subset $Asubseteq S^{d-1}$ such that its translations by the rotations $gamma_1,ldots,gamma_r$ partition the sphere. Motivated by some old open questions of Mycielski and Wagon, we investigate the version of this notion where the set $A$ has to be measurable with respect to the spherical measure. Our main result shows that measurable divisibility is impossible for a generic (in various meanings) $r$-tuple of rotations. This is in stark contrast to the recent result of Conley, Marks and Unger which implies that, for every generic $r$-tuple, divisibility is possible with parts that have the property of Baire.

Download