Do you want to publish a course? Click here

Data-Driven Regular Expressions Evolution for Medical Text Classification Using Genetic Programming

63   0   0.0 ( 0 )
 Added by Uwe Aickelin
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In medical fields, text classification is one of the most important tasks that can significantly reduce human workload through structured information digitization and intelligent decision support. Despite the popularity of learning-based text classification techniques, it is hard for human to understand or manually fine-tune the classification results for better precision and recall, due to the black box nature of learning. This study proposes a novel regular expression-based text classification method making use of genetic programming (GP) approaches to evolve regular expressions that can classify a given medical text inquiry with satisfactory precision and recall while allow human to read the classifier and fine-tune accordingly if necessary. Given a seed population of regular expressions (can be randomly initialized or manually constructed by experts), our method evolves a population of regular expressions according to chosen fitness function, using a novel regular expression syntax and a series of carefully chosen reproduction operators. Our method is evaluated with real-life medical text inquiries from an online healthcare provider and shows promising performance. More importantly, our method generates classifiers that can be fully understood, checked and updated by medical doctors, which are fundamentally crucial for medical related practices.

rate research

Read More

In this paper, we propose a rule-based engine composed of high quality and interpretable regular expressions for medical text classification. The regular expressions are auto generated by a constructive heuristic method and optimized using a Pool-based Simulated Annealing (PSA) approach. Although existing Deep Neural Network (DNN) methods present high quality performance in most Natural Language Processing (NLP) applications, the solutions are regarded as uninterpretable black boxes to humans. Therefore, rule-based methods are often introduced when interpretable solutions are needed, especially in the medical field. However, the construction of regular expressions can be extremely labor-intensive for large data sets. This research aims to reduce the manual efforts while maintaining high-quality solutions
Real-world text classification tasks often require many labeled training examples that are expensive to obtain. Recent advancements in machine teaching, specifically the data programming paradigm, facilitate the creation of training data sets quickly via a general framework for building weak models, also known as labeling functions, and denoising them through ensemble learning techniques. We present a fast, simple data programming method for augmenting text data sets by generating neighborhood-based weak models with minimal supervision. Furthermore, our method employs an iterative procedure to identify sparsely distributed examples from large volumes of unlabeled data. The iterative data programming techniques improve newer weak models as more labeled data is confirmed with human-in-loop. We show empirical results on sentence classification tasks, including those from a task of improving intent recognition in conversational agents.
Large pre-trained transformer-based language models have achieved impressive results on a wide range of NLP tasks. In the past few years, Knowledge Distillation(KD) has become a popular paradigm to compress a computationally expensive model to a resource-efficient lightweight model. However, most KD algorithms, especially in NLP, rely on the accessibility of the original training dataset, which may be unavailable due to privacy issues. To tackle this problem, we propose a novel two-stage data-free distillation method, named Adversarial self-Supervised Data-Free Distillation (AS-DFD), which is designed for compressing large-scale transformer-based models (e.g., BERT). To avoid text generation in discrete space, we introduce a Plug & Play Embedding Guessing method to craft pseudo embeddings from the teachers hidden knowledge. Meanwhile, with a self-supervised module to quantify the students ability, we adapt the difficulty of pseudo embeddings in an adversarial training manner. To the best of our knowledge, our framework is the first data-free distillation framework designed for NLP tasks. We verify the effectiveness of our method on several text classification datasets.
In this paper, we propose Stacked DeBERT, short for Stacked Denoising Bidirectional Encoder Representations from Transformers. This novel model improves robustness in incomplete data, when compared to existing systems, by designing a novel encoding scheme in BERT, a powerful language representation model solely based on attention mechanisms. Incomplete data in natural language processing refer to text with missing or incorrect words, and its presence can hinder the performance of current models that were not implemented to withstand such noises, but must still perform well even under duress. This is due to the fact that current approaches are built for and trained with clean and complete data, and thus are not able to extract features that can adequately represent incomplete data. Our proposed approach consists of obtaining intermediate input representations by applying an embedding layer to the input tokens followed by vanilla transformers. These intermediate features are given as input to novel denoising transformers which are responsible for obtaining richer input representations. The proposed approach takes advantage of stacks of multilayer perceptrons for the reconstruction of missing words embeddings by extracting more abstract and meaningful hidden feature vectors, and bidirectional transformers for improved embedding representation. We consider two datasets for training and evaluation: the Chatbot Natural Language Understanding Evaluation Corpus and Kaggles Twitter Sentiment Corpus. Our model shows improved F1-scores and better robustness in informal/incorrect texts present in tweets and in texts with Speech-to-Text error in the sentiment and intent classification tasks.
112 - Shaobo Li , Qun Liu , Xin Jiang 2021
Human-designed rules are widely used to build industry applications. However, it is infeasible to maintain thousands of such hand-crafted rules. So it is very important to integrate the rule knowledge into neural networks to build a hybrid model that achieves better performance. Specifically, the human-designed rules are formulated as Regular Expressions (REs), from which the equivalent Minimal Deterministic Finite Automatons (MDFAs) are constructed. We propose to use the MDFA as an intermediate model to capture the matched RE patterns as rule-based features for each input sentence and introduce these additional features into neural networks. We evaluate the proposed method on the ATIS intent classification task. The experiment results show that the proposed method achieves the best performance compared to neural networks and four other methods that combine REs and neural networks when the training dataset is relatively small.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا