Do you want to publish a course? Click here

Polarization angle dependence of the breathing modes in confined one-dimensional dipolar bosons

270   0   0.0 ( 0 )
 Added by Edmond Orignac
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Probing the radial collective oscillation of a trapped quantum system is an accurate experimental tool to investigate interactions and dimensionality effects. We consider a fully polarized quasi-one dimensional dipolar quantum gas of bosonic dysprosium atoms in a parabolic trap at zero temperature. We model the dipolar gas with an effective quasi-one dimensional Hamiltonian in the single-mode approximation, and derive the equation of state using a variational approximation based on the Lieb-Liniger gas Bethe Ansatz wavefunction or perturbation theory. We calculate the breathing mode frequencies while varying polarization angles by a sum-rule approach, and find them in good agreement with recent experimental findings.



rate research

Read More

By means of time-dependent density-matrix renormalization-group (TDMRG) we are able to follow the real-time dynamics of a single impurity embedded in a one-dimensional bath of interacting bosons. We focus on the impurity breathing mode, which is found to be well-described by a single oscillation frequency and a damping rate. If the impurity is very weakly coupled to the bath, a Luttinger-liquid description is valid and the impurity suffers an Abraham-Lorentz radiation-reaction friction. For a large portion of the explored parameter space, the TDMRG results fall well beyond the Luttinger-liquid paradigm.
224 - S. De Palo , R. Citro , E. Orignac 2019
We propose a variational approximation to the ground state energy of a one-dimensional gas of interacting bosons on the continuum based on the Bethe Ansatz ground state wavefunction of the Lieb-Liniger model. We apply our variational approximation to a gas of dipolar bosons in the single mode approximation and obtain its ground state energy per unit length. This allows for the calculation of the Tomonaga-Luttinger exponent as a function of density and the determination of the structure factor at small momenta. Moreover, in the case of attractive dipolar interaction, an instability is predicted at a critical density, which could be accessed in lanthanide atoms.
We consider dipolar bosons in two tubes of one-dimensional lattices, where the dipoles are aligned to be maximally repulsive and the particle filling fraction is the same in each tube. In the classical limit of zero inter-site hopping, the particles arrange themselves into an ordered crystal for any rational filling fraction, forming a complete devils staircase like in the single tube case. Turning on hopping within each tube then gives rise to a competition between the crystalline Mott phases and a liquid of defects or solitons. However, for the two-tube case, we find that solitons from different tubes can bind into pairs for certain topologies of the filling fraction. This provides an intriguing example of pairing that is purely driven by correlations close to a Mott insulator.
375 - S. B. Prasad , B. C. Mulkerin , 2020
We have employed the theory of harmonically trapped dipolar Bose-Einstein condensates to examine the influence of a uniform magnetic field that rotates at an arbitrary angle to its own orientation. This is achieved by semi-analytically solving the dipolar superfluid hydrodynamics of this system within the Thomas-Fermi approximation and by allowing the body frame of the condensates density profile to be tilted with respect to the symmetry axes of the nonrotating harmonic trap. This additional degree of freedom manifests itself in the presence of previously unknown stationary solution branches for any given dipole tilt angle. We also find that the tilt angle of the stationary states body frame with respect to the rotation axis is a nontrivial function of the trapping geometry, rotation frequency and dipole tilt angle. For rotation frequencies of at least an order of magnitude higher than the in-plane trapping frequency, the stationary state density profile is almost perfectly equivalent to the profile expected in a time-averaged dipolar potential that effectively vanishes when the dipoles are tilted along the `magic angle, $54.7 deg$. However, by linearizing the fully time-dependent superfluid hydrodynamics about these stationary states, we find that they are dynamically unstable against the formation of collective modes, which we expect would result in turbulent decay.
We study the quantum ground state of ultracold bosons in a two-dimensional square lattice. The bosons interact via the repulsive dipolar interactions and s-wave scattering. The dynamics is described by the extended Bose-Hubbard model including correlated hopping due to the dipolar interactions, the coefficients are found from the second quantized Hamiltonian using the Wannier expansion with realistic parameters. We determine the phase diagram using the Gutzwiller ansatz in the regime where the coefficients of the correlated hopping terms are negative and can interfere with the tunneling due to single-particle effects. We show that this interference gives rise to staggered superfluid and supersolid phases at vanishing kinetic energy, while we identify parameter regions at finite kinetic energy where the phases are incompressible. We compare the results with the phase diagram obtained with the cluster Gutzwiller approach and with the results found in one dimension using DMRG.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا