Do you want to publish a course? Click here

Roles of Blackbody Friction Forces in the Rb and Cs Atom Interferometers

101   0   0.0 ( 0 )
 Added by Bindiya Arora
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Atom interferometry is amongst the most advanced technologies that provides very high-precision measurements. There can exist a number of obscure forces that can interfere with the atoms used in this instrument. In the present work, we are probing possible roles of one such important forces, known as ``blackbody friction force (BBFF), that may affect the precisions in the measurements made using atom interferometers based on the Rb and Cs atoms. The BBFF can be generated on atoms due to the black-body radiations emitted by the stray electromagnetic fields present in the experimental set-up and other metallic shielding. The strength of the BBFF can be calculated by integrating the complex parts of the dynamic polarizabilities of atoms, which show varying behaviour at the resonant and non-resonant transitions in the above atoms. Our analyses suggest that the off-resonant atomic transitions make significant contributions to the BBFF at low temperatures in the Rb and Cs atom interferometers. Present study also advocates that it is imperative to carry out the integration over a wide spectrum of frequencies for correct evaluation of the BBFF; specially at higher temperatures.



rate research

Read More

383 - A. Duspayev , X. Han , M.A. Viray 2021
We propose a novel type of Rydberg dimer, consisting of a Rydberg-state atom bound to a distant positive ion. The molecule is formed through long-range electric-multipole interaction between the Rydberg atom and the point-like ion. We present potential energy curves (PECs) that are asymptotically connected with Rydberg $nP$- or $nD$-states of rubidium or cesium. The PECs exhibit deep, long-range wells which support many vibrational states of Rydberg-atom-ion molecules (RAIMs). We consider photo-association of RAIMs in both the weak and the strong optical-coupling regimes between initial and Rydberg states of the neutral atom. Experimental considerations for the realization of RAIMs are discussed.
The thermal friction force acting on an atom moving relative to a thermal photon bath is known to be proportional to an integral over the imaginary part of the frequency-dependent atomic (dipole) polarizability. Using a numerical approach, we find that blackbody friction on atoms either in dilute environments or in hot ovens is larger than previously thought by orders of magnitude. This enhancement is due to far off-resonant driving of transitions by low-frequency thermal radiation. At typical temperatures, the blackbody radiation maximum lies far below the atomic transition wavelengths. Surprisingly, due to the finite lifetime of atomic levels, which gives rise to Lorentzian line profiles, far off-resonant excitation leads to the dominant contribution to the blackbody friction.
Correlating the signals from simultaneous atom interferometers has enabled some of the most precise determinations of fundamental constants. Here, we show that multiple interferometers with strategically chosen initial conditions (offset simultaneous conjugate interferometers or OSCIs) can provide multi-channel readouts that amplify or suppress specific effects. This allows us to measure the photon recoil, and thus the fine structure constant, while being insensitive to gravity gradients, general acceleration gradients, and unwanted diffraction phases - these effects can be simultaneously monitored in other channels. An expected 4-fold reduction of sensitivity to spatial variations of gravity (due to higher-order gradients) and a 6-fold suppression of diffraction phases paves the way to measurements of the fine structure constant below the 0.1-ppb level, or to simultaneous sensing of gravity, the gravity gradient, and rotations.
We report the formation of a dual-species Bose-Einstein condensate of $^{87}$Rb and $^{133}$Cs in the same trapping potential. Our method exploits the efficient sympathetic cooling of $^{133}$Cs via elastic collisions with $^{87}$Rb, initially in a magnetic quadrupole trap and subsequently in a levitated optical trap. The two condensates each contain up to $2times10^{4}$ atoms and exhibit a striking phase separation, revealing the mixture to be immiscible due to strong repulsive interspecies interactions. Sacrificing all the $^{87}$Rb during the cooling, we create single species $^{133}$Cs condensates of up to $6times10^{4}$ atoms.
171 - C Schubert , J Hartwig , H Ahlers 2013
In this paper we discuss in detail an experimental scheme to test the universality of free fall (UFF) with a differential $^{87}$Rb / $^{85}$Rb atom interferometer applicable for extended free fall of several seconds in the frame of the STE-QUEST mission. This analysis focuses on suppression of noise and error sources which would limit the accuracy of a violation measurement. We show that the choice of atomic species and the correctly matched parameters of the interferometer sequence are of utmost importance to suppress leading order phase shifts. In conclusion we will show the expected performance of $2$ parts in $10^{15}$ of such an interferometer for a test of the UFF.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا