Do you want to publish a course? Click here

Screw dislocations in the X-cube fracton model

81   0   0.0 ( 0 )
 Added by Kevin Slagle
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The X-cube model, a prototypical gapped fracton model, has been shown to have a foliation structure. That is, inside the 3+1D model, there are hidden layers of 2+1D gapped topological states. A screw dislocation in a 3+1D lattice can often reveal nontrivial features associated with a layered structure. In this paper, we study the X-cube model on lattices with screw dislocations. In particular, we find that a screw dislocation results in a finite change in the logarithm of the ground state degeneracy of the model. Part of the change can be traced back to the effect of screw dislocations in a simple stack of 2+1D topological states, hence corroborating the foliation structure in the model. The other part of the change comes from the induced motion of fractons or sub-dimensional excitations along the dislocation, a feature absent in the stack of 2+1D layers.



rate research

Read More

Helimagnets realize an effective lamellar ordering that supports disclination and dislocation defects. Here, we investigate the micromagnetic structure of screw dislocation lines in cubic chiral magnets using analytical and numerical methods. The far field of these dislocations is universal and classified by an integer strength $ u$ that characterizes the winding of magnetic moments. We demonstrate that a rich variety of dislocation-core structures can be realized even for the same strength $ u$. In particular, the magnetization at the core can be either smooth or singular. We present a specific example with $ u = 1$ for which the core is composed of a chain of singular Bloch points. In general, screw dislocations carry a non-integer but finite skyrmion charge so that they can be efficiently manipulated by spin currents.
In this work, we show that the checkerboard model exhibits the phenomenon of foliated fracton order. We introduce a renormalization group transformation for the model that utilizes toric code bilayers as an entanglement resource, and show how to extend the model to general three-dimensional manifolds. Furthermore, we use universal properties distilled from the structure of fractional excitations and ground-state entanglement to characterize the foliated fracton phase and find that it is the same as two copies of the X-cube model. Indeed, we demonstrate that the checkerboard model can be transformed into two copies of the X-cube model via an adiabatic deformation.
We establish the presence of foliated fracton order in the Majorana checkerboard model. In particular, we describe an entanglement renormalization group transformation which utilizes toric code layers as resources of entanglement, and furthermore discuss entanglement signatures and fractional excitations of the model. In fact, we give an exact local unitary equivalence between the Majorana checkerboard model and the semionic X-cube model augmented with decoupled fermionic modes. This mapping demonstrates that the model lies within the X-cube foliated fracton phase.
102 - Xin Zhang , Kaige Hu , Yifei Li 2019
Van der Waals (vdW) layered transition metal dichalcogenides (TMDCs) materials are emerging as one class of quantum materials holding novel optical and electronic properties. In particular, the bandgap tunability attractive for nanoelectronics technology have been observed up to 1.1 eV when applying dielectric screening or grain boundary engineering. Here we present the experimental observation of bandgap closing at the center of the screw dislocation-driven WS2 spiral pyramid by means of scanning tunneling spectroscopy, which is validated by first-principle calculations. The observed giant bandgap modulation is attributed to the presence of dangling bonds induced by the W-S broken and the enhanced localized stress in the core of the dislocation. Achieving this metallic state and the consequent vertical conducting channel presents a pathway to 3D-interconnected vdW heterostructure devices based on emergent semiconducting TMDCs.
Pinning interaction between a screw dislocation and a void in fcc copper is investigated by means of molecular dynamics simulation. A screw dislocation bows out to undergo depinning on the original glide plane at low temperatures, where the behavior of the depinning stress is consistent with that obtained by a continuum model. If the temperature is higher than 300 K, the motion of a screw dislocation is no longer restricted to a single glide plane due to cross slip on the void surface. Several depinning mechanisms that involve multiple glide planes are found. In particular, a depinning mechanism that produces an intrinsic prismatic loop is found. We show that these complex depinning mechanisms significantly increase the depinning stress.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا