The software MAVKA is described, which was elaborated for statistically optimal determination of the characteristics of the extrema of 1000+ variable stars of different types, mainly eclipsing and pulsating. The approximations are phenomenological, but not physical. As often, the discovery of a new variable star is made on time series of a single-filter (single-channel) data, and there is no possibility to determine parameters needed for physical modelling (e.g. temperature, radial velocities, mass ratio of binaries). Besides classical polynomial approximation AP (we limited the degree of the polynomial from 2 to 9), there are realized symmetrical approximations (symmetrical polynomials SP, wall-supported horizontal line WSL and parabola WSP, restricted polynomials of non-integer order based on approximations of the functions proposed by Andronov (2012) and Mikulasek (2015) and generally asymmetric functions (asymptotic parabola AP, parabolic spline PS, generalized hyperbolic secant function SECH and log-normal-like BSK). This software is a successor of the Observation Obscurer with some features for the variable star research, including a block for running parabola RP scalegram and approximation. Whereas the RP is oriented on approximation of the complete data set. MAVKA is pointed to parts of the light curve close to extrema (including total eclipses and transits of stars and exoplanets). The functions for wider intervals, covering the eclipse totally, were discussed in 2017Ap.....60...57A . Global and local approximations are reviewed in 2020kdbd.book..191A . The software is available at http://uavso.org.ua/mavka and https://katerynaandrych.wixsite.com/mavka. We have analyzed the data from own observations, as well as from monitoring obtained at ground-based and space (currently, mainly, TESS) observatories. It may be used for signals of any nature.