Verification of joint measurability using phase-space quasiprobability distributions


Abstract in English

Measurement incompatibility is a distinguishing property of quantum physics and an essential resource for many quantum information processing tasks. We introduce an approach to verify the joint measurability of measurements based on phase-space quasiprobability distributions. Our results therefore establish a connection between two notions of non-classicality, namely the negativity of quasiprobability distributions and measurement incompatibility. We show how our approach can be applied to the study of incompatibility-breaking channels and derive incompatibility-breaking sufficient conditions for bosonic systems and Gaussian channels. In particular, these conditions provide useful tools for investigating the effects of errors and imperfections on the incompatibility of measurements in practice. To illustrate our method, we consider all classes of single-mode Gaussian channels. We show that pure lossy channels with 50% or more losses break the incompatibility of all measurements that can be represented by non-negative Wigner functions, which includes the set of Gaussian measurements.

Download