Do you want to publish a course? Click here

Fusion of Range and Stereo Data for High-Resolution Scene-Modeling

165   0   0.0 ( 0 )
 Added by Radu P Horaud
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper addresses the problem of range-stereo fusion, for the construction of high-resolution depth maps. In particular, we combine low-resolution depth data with high-resolution stereo data, in a maximum a posteriori (MAP) formulation. Unlike existing schemes that build on MRF optimizers, we infer the disparity map from a series of local energy minimization problems that are solved hierarchically, by growing sparse initial disparities obtained from the depth data. The accuracy of the method is not compromised, owing to three properties of the data-term in the energy function. Firstly, it incorporates a new correlation function that is capable of providing refined correlations and disparities, via subpixel correction. Secondly, the correlation scores rely on an adaptive cost aggregation step, based on the depth data. Thirdly, the stereo and depth likelihoods are adaptively fused, based on the scene texture and camera geometry. These properties lead to a more selective growing process which, unlike previous seed-growing methods, avoids the tendency to propagate incorrect disparities. The proposed method gives rise to an intrinsically efficient algorithm, which runs at 3FPS on 2.0MP images on a standard desktop computer. The strong performance of the new method is established both by quantitative comparisons with state-of-the-art methods, and by qualitative comparisons using real depth-stereo data-sets.



rate research

Read More

The combination of range sensors with color cameras can be very useful for robot navigation, semantic perception, manipulation, and telepresence. Several methods of combining range- and color-data have been investigated and successfully used in various robotic applications. Most of these systems suffer from the problems of noise in the range-data and resolution mismatch between the range sensor and the color cameras, since the resolution of current range sensors is much less than the resolution of color cameras. High-resolution depth maps can be obtained using stereo matching, but this often fails to construct accurate depth maps of weakly/repetitively textured scenes, or if the scene exhibits complex self-occlusions. Range sensors provide coarse depth information regardless of presence/absence of texture. The use of a calibrated system, composed of a time-of-flight (TOF) camera and of a stereoscopic camera pair, allows data fusion thus overcoming the weaknesses of both individual sensors. We propose a novel TOF-stereo fusion method based on an efficient seed-growing algorithm which uses the TOF data projected onto the stereo image pair as an initial set of correspondences. These initial seeds are then propagated based on a Bayesian model which combines an image similarity score with rough depth priors computed from the low-resolution range data. The overall result is a dense and accurate depth map at the resolution of the color cameras at hand. We show that the proposed algorithm outperforms 2D image-based stereo algorithms and that the results are of higher resolution than off-the-shelf color-range sensors, e.g., Kinect. Moreover, the algorithm potentially exhibits real-time performance on a single CPU.
The deep multi-view stereo (MVS) and stereo matching approaches generally construct 3D cost volumes to regularize and regress the output depth or disparity. These methods are limited when high-resolution outputs are needed since the memory and time costs grow cubically as the volume resolution increases. In this paper, we propose a both memory and time efficient cost volume formulation that is complementary to existing multi-view stereo and stereo matching approaches based on 3D cost volumes. First, the proposed cost volume is built upon a standard feature pyramid encoding geometry and context at gradually finer scales. Then, we can narrow the depth (or disparity) range of each stage by the depth (or disparity) map from the previous stage. With gradually higher cost volume resolution and adaptive adjustment of depth (or disparity) intervals, the output is recovered in a coarser to fine manner. We apply the cascade cost volume to the representative MVS-Net, and obtain a 23.1% improvement on DTU benchmark (1st place), with 50.6% and 74.2% reduction in GPU memory and run-time. It is also the state-of-the-art learning-based method on Tanks and Temples benchmark. The statistics of accuracy, run-time and GPU memory on other representative stereo CNNs also validate the effectiveness of our proposed method.
106 - Qian Ye , Jun Xiao , Kin-man Lam 2021
This paper considers the problem of generating an HDR image of a scene from its LDR images. Recent studies employ deep learning and solve the problem in an end-to-end fashion, leading to significant performance improvements. However, it is still hard to generate a good quality image from LDR images of a dynamic scene captured by a hand-held camera, e.g., occlusion due to the large motion of foreground objects, causing ghosting artifacts. The key to success relies on how well we can fuse the input images in their feature space, where we wish to remove the factors leading to low-quality image generation while performing the fundamental computations for HDR image generation, e.g., selecting the best-exposed image/region. We propose a novel method that can better fuse the features based on two ideas. One is multi-step feature fusion; our network gradually fuses the features in a stack of blocks having the same structure. The other is the design of the component block that effectively performs two operations essential to the problem, i.e., comparing and selecting appropriate images/regions. Experimental results show that the proposed method outperforms the previous state-of-the-art methods on the standard benchmark tests.
88 - Yao Yao , Zixin Luo , Shiwei Li 2019
Deep learning has recently demonstrated its excellent performance for multi-view stereo (MVS). However, one major limitation of current learned MVS approaches is the scalability: the memory-consuming cost volume regularization makes the learned MVS hard to be applied to high-resolution scenes. In this paper, we introduce a scalable multi-view stereo framework based on the recurrent neural network. Instead of regularizing the entire 3D cost volume in one go, the proposed Recurrent Multi-view Stereo Network (R-MVSNet) sequentially regularizes the 2D cost maps along the depth direction via the gated recurrent unit (GRU). This reduces dramatically the memory consumption and makes high-resolution reconstruction feasible. We first show the state-of-the-art performance achieved by the proposed R-MVSNet on the recent MVS benchmarks. Then, we further demonstrate the scalability of the proposed method on several large-scale scenarios, where previous learned approaches often fail due to the memory constraint. Code is available at https://github.com/YoYo000/MVSNet.
High-dynamic-range (HDR) photography involves fusing a bracket of images taken at different exposure settings in order to compensate for the low dynamic range of digital cameras such as the ones used in smartphones. In this paper, a method for automatically selecting the exposure settings of such images is introduced based on the camera characteristic function. In addition, a new fusion method is introduced based on an optimization formulation and weighted averaging. Both of these methods are implemented on a smartphone platform as an HDR app to demonstrate the practicality of the introduced methods. Comparison results with several existing methods are presented indicating the effectiveness as well as the computational efficiency of the introduced solution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا