We point out the generic competition between the Hunds coupling and the spin-orbit coupling in correlated materials, and this competition leads to an electronic dilemma between the Hunds metal and the relativistic insulators. Hunds metals refer to the fate of the would-be insulators where the Hunds coupling suppresses the correlation and drives the systems into correlated metals. Relativistic Mott insulators refer to the fate of the would-be metals where the relativistic spin-orbit coupling enhances the correlation and drives the systems into Mott insulators. These contradictory trends are naturally present in many correlated materials. We study the competition between Hunds coupling and spin-orbit coupling in correlated materials and explore the interplay and the balance from these two contradictory trends. The system can become a spin-orbit-coupled Hunds metal or a Hunds assisted relativistic Mott insulator. Our observation could find a broad application and relevance to many correlated materials with multiple orbitals.