We study an optimal dividend problem for an insurer who simultaneously controls investment weights in a financial market, liability ratio in the insurance business, and dividend payout rate. The insurer seeks an optimal strategy to maximize her expected utility of dividend payments over an infinite horizon. By applying a perturbation approach, we obtain the optimal strategy and the value function in closed form for log and power utility. We conduct an economic analysis to investigate the impact of various model parameters and risk aversion on the insurers optimal strategy.
We propose a general family of piecewise hyperbolic absolute risk aversion (PHARA) utility, including many non-standard utilities as examples. A typical application is the composition of an HARA preference and a piecewise linear payoff in hedge fund management. We derive a unified closed-form formula of the optimal portfolio, which is a four-term division. The formula has clear economic meanings, reflecting the behavior of risk aversion, risk seeking, loss aversion and first-order risk aversion. One main finding is that risk-taking behaviors are greatly increased by non-concavity and reduced by non-differentiability.
The problem of portfolio optimization when stochastic factors drive returns and volatilities has been studied in previous works by the authors. In particular, they proposed asymptotic approximations for value functions and optimal strategies in the regime where these factors are running on both slow and fast timescales. However, the rigorous justification of the accuracy of these approximations has been limited to power utilities and a single factor. In this paper, we provide an accuracy analysis for cases with general utility functions and two timescale factors by constructing sub- and super-solutions to the fully nonlinear problem such that their difference is at the desired level of accuracy. This approach will be valuable in various related stochastic control problems.
In this paper we propose and solve an optimal dividend problem with capital injections over a finite time horizon. The surplus dynamics obeys a linearly controlled drifted Brownian motion that is reflected at the origin, dividends give rise to time-dependent instantaneous marginal profits, whereas capital injections are subject to time-dependent instantaneous marginal costs. The aim is to maximize the sum of a liquidation value at terminal time and of the total expected profits from dividends, net of the total expected costs for capital injections. Inspired by the study of El Karoui and Karatzas (1989) on reflected follower problems, we relate the optimal dividend problem with capital injections to an optimal stopping problem for a drifted Brownian motion that is absorbed at the origin. We show that whenever the optimal stopping rule is triggered by a time-dependent boundary, the value function of the optimal stopping problem gives the derivative of the value function of the optimal dividend problem. Moreover, the optimal dividend strategy is also triggered by the moving boundary of the associated stopping problem. The properties of this boundary are then investigated in a case study in which instantaneous marginal profits and costs from dividends and capital injections are constants discounted at a constant rate.
We consider non-concave and non-smooth random utility functions with do- main of definition equal to the non-negative half-line. We use a dynamic pro- gramming framework together with measurable selection arguments to establish both the no-arbitrage condition characterization and the existence of an optimal portfolio in a (generically incomplete) discrete-time financial market model with finite time horizon. In contrast to the existing literature, we propose to consider a probability space which is not necessarily complete.
This paper solves the problem of optimal dynamic consumption, investment, and healthcare spending with isoelastic utility, when natural mortality grows exponentially to reflect Gompertz law and investment opportunities are constant. Healthcare slows the natural growth of mortality, indirectly increasing utility from consumption through longer lifetimes. Optimal consumption and healthcare imply an endogenous mortality law that is asymptotically exponential in the old-age limit, with lower growth rate than natural mortality. Healthcare spending steadily increases with age, both in absolute terms and relative to total spending. The optimal stochastic control problem reduces to a nonlinear ordinary differential equation with a unique solution, which has an explicit expression in the old-age limit. The main results are obtained through a novel version of Perrons method.