No Arabic abstract
We introduce the Michigan Infrared Test Thermal ELT N-band (MITTEN) Cryostat, a new facility for testing infrared detectors with a focus on mid-infrared (MIR) wavelengths (8-13 microns). New generations of large format, deep well, fast readout MIR detectors are now becoming available to the astronomical community. As one example, Teledyne Imaging Sensors (TIS) has introduced a long-wave Mercury-Cadmium-Telluride (MCT) array, GeoSnap, with high quantum efficiency (> 65 %) and improved noise properties compared to previous generation Si:As blocked impurity band (BIB) detectors. GeoSnap promises improved sensitivities, and efficiencies, for future background-limited MIR instruments, in particular with future extremely large telescopes (ELTs). We describe our new test facility suitable for measuring characteristics of these detectors, such as read noise, dark current, linearity, gain, pixel operability, quantum efficiency, and point source imaging performance relative to a background scene, as well as multiple point sources of differing contrast. MITTEN has an internal light source, and soon an accompanying filter wheel and aperture plate, reimaged onto the detector using an Offner relay. The baseline temperature of the cryostat interior is maintained < 40 K and the optical bench maintains a temperature of 16 K using a two-stage pulse-tube cryocooler package from Cryomech. No measurable background radiation from the cryostat interior has yet been detected.
We describe the cryogenic system for SPIDER, a balloon-borne microwave polarimeter that will map 8% of the sky with degree-scale angular resolution. The system consists of a 1284 L liquid helium cryostat and a 16 L capillary-filled superfluid helium tank, which provide base operating temperatures of 4 K and 1.5 K, respectively. Closed-cycle helium-3 adsorption refrigerators supply sub-Kelvin cooling power to multiple focal planes, which are housed in monochromatic telescope inserts. The main helium tank is suspended inside the vacuum vessel with thermally insulating fiberglass flexures, and shielded from thermal radiation by a combination of two vapor cooled shields and multi-layer insulation. This system allows for an extremely low instrumental background and a hold time in excess of 25 days. The total mass of the cryogenic system, including cryogens, is approximately 1000 kg. This enables conventional long duration balloon flights. We will discuss the design, thermal analysis, and qualification of the cryogenic system.
The Mid-infrared ELT Imager and Spectrograph (METIS) will provide the Extremely Large Telescope (ELT) with a unique window to the thermal- and mid-infrared (3 - 13 microns). Its single-conjugate adaptive optics (SCAO) system will enable high contrast imaging and integral field unit (IFU) spectroscopy (R~100,000) at the diffraction limit of the ELT. This article describes the science drivers, conceptual design, observing modes, and expected performance of METIS.
METIS will be among the first generation of scientific instruments on the E-ELT. Focusing on highest angular resolution and high spectral resolution, METIS will provide diffraction limited imaging and coronagraphy from 3-14um over an 20x20 field of view, as well as integral field spectroscopy at R ~ 100,000 from 2.9-5.3um. In addition, METIS provides medium-resolution (R ~ 5000) long slit spectroscopy, and polarimetric measurements at N band. While the baseline concept has already been discussed, this paper focuses on the significant developments over the past two years in several areas: The science case has been updated to account for recent progress in the main science areas circum-stellar disks and the formation of planets, exoplanet detection and characterization, Solar system formation, massive stars and clusters, and star formation in external galaxies. We discuss the developments in the adaptive optics (AO) concept for METIS, the telescope interface, and the instrument modelling. Last but not least, we provide an overview of our technology development programs, which ranges from coronagraphic masks, immersed gratings, and cryogenic beam chopper to novel approaches to mirror polishing, background calibration and cryo-cooling. These developments have further enhanced the design and technology readiness of METIS to reliably serve as an early discovery machine on the E-ELT.
We describe the SPIDER flight cryostat, which is designed to cool six millimeter-wavelength telescopes during an Antarctic long-duration balloon flight. The cryostat, one of the largest to have flown on a stratospheric payload, uses liquid helium-4 to deliver cooling power to stages at 4.2 and 1.6 K. Stainless steel capillaries facilitate a high flow impedance connection between the main liquid helium tank and a smaller superfluid tank, allowing the latter to operate at 1.6 K as long as there is liquid in the 4.2 K main tank. Each telescope houses a closed cycle helium-3 adsorption refrigerator that further cools the focal planes down to 300 mK. Liquid helium vapor from the main tank is routed through heat exchangers that cool radiation shields, providing negative thermal feedback. The system performed successfully during a 17 day flight in the 2014-2015 Antarctic summer. The cryostat had a total hold time of 16.8 days, with 15.9 days occurring during flight.
We describe the cryostat and supporting electronics for the EBEX experiment. EBEX is a balloon-borne polarimeter designed to measure the B-mode polarization of the cosmic microwave background radiation. The instrument includes a 1.5 meter Gregorian-type telescope and 1432 bolometric transition edge sensor detectors operating at 0.3 K. Electronics for monitoring temperatures and controlling cryostat refrigerators is read out over CANbus. A timing system ensures the data from all subsystems is accurately synchronized. EBEX completed an engineering test flight in June 2009 during which the cryogenics and supporting electronics performed according to predictions. The temperatures of the cryostat were stable, and an analysis of a subset of the data finds no scan synchronous signal in the cryostat temperatures. Preparations are underway for an Antarctic flight.