Extreme Black Hole Anabasis


Abstract in English

We study the $mathsf{SL}(2)$ transformation properties of spherically symmetric perturbations of the Bertotti-Robinson universe and identify an invariant $mu$ that characterizes the backreaction of these linear solutions. The only backreaction allowed by Birkhoffs theorem is one that destroys the $AdS_2times S^2$ boundary and builds the exterior of an asymptotically flat Reissner-Nordstrom black hole with $Q=Msqrt{1-mu/4}$. We call such backreaction with boundary condition change an anabasis. We show that the addition of linear anabasis perturbations to Bertotti-Robinson may be thought of as a boundary condition that defines a connected $AdS_2times S^2$. The connected $AdS_2$ is a nearly-$AdS_2$ with its $mathsf{SL}(2)$ broken appropriately for it to maintain connection to the asymptotically flat region of Reissner-Nordstrom. We perform a backreaction calculation with matter in the connected $AdS_2times S^2$ and show that it correctly captures the dynamics of the asymptotically flat black hole.

Download