Do you want to publish a course? Click here

Many ways to stay in the game: Individual variability maintains high biodiversity in planktonic micro-organisms

49   0   0.0 ( 0 )
 Added by Julie Rowlett
 Publication date 2020
  fields Biology
and research's language is English




Ask ChatGPT about the research

In apparent contradiction to competition theory, the number of known, co-existing plankton species far exceeds their explicable biodiversity - a discrepancy termed the Paradox of the Plankton. We introduce a new game-theoretic model for competing micro-organisms in which one player consists of all organisms of one species. The stable points for the population dynamics in our model, known as strategic behavior distributions (SBDs), are probability distributions of behaviors across all organisms which imply a stable population of the species as a whole. We find that intra-specific variability is the key characteristic that ultimately allows co-existence because the outcomes of competitions between individuals with variable competitive abilities is unpredictable. Our simulations based on the theoretical model show that up to 100 species can coexist for at least 10000 generations, and that even small population sizes or species with inferior competitive ability can survive when there is intra-specific variability. In nature, this variability can be observed as niche differentiation, variability in environmental and ecological factors, and variability of individual behaviors or physiology. Therefore previous specific explanations of the paradox are consistent with and provide specific examples of our suggestion that individual variability is the mechanism which solves the paradox.



rate research

Read More

Why, contrary to theoretical predictions, do marine microbe communities harbor tremendous phenotypic heterogeneity? How can so many marine microbe species competing in the same niche coexist? We discovered a unifying explanation for both phenomena by investigating a non-cooperative game that interpolates between individual-level competitions and species-level outcomes. We identified all equilibrium strategies of the game. These strategies are characterized by maximal phenotypic heterogeneity. They are also neutral towards each other in the sense that an unlimited number of species can co-exist while competing according to the equilibrium strategies. Whereas prior theory predicts that natural selection would minimize trait variation around an optimum value, here we obtained a rigorous mathematical proof that species with maximally variable traits are those that endure. This discrepancy may reflect a disparity between predictions from models developed for larger organisms in contrast to our microbe-centric model. Rigorous mathematics proves that phenotypic heterogeneity is itself a mechanistic underpinning of microbial diversity. This discovery has fundamental ramifications for microbial ecology and may represent an adaptive reservoir sheltering biodiversity in changing environmental conditions.
Understanding how genotypes map onto phenotypes, fitness, and eventually organisms is arguably the next major missing piece in a fully predictive theory of evolution. We refer to this generally as the problem of the genotype-phenotype map. Though we are still far from achieving a complete picture of these relationships, our current understanding of simpler questions, such as the structure induced in the space of genotypes by sequences mapped to molecular structures, has revealed important facts that deeply affect the dynamical description of evolutionary processes. Empirical evidence supporting the fundamental relevance of features such as phenotypic bias is mounting as well, while the synthesis of conceptual and experimental progress leads to questioning current assumptions on the nature of evolutionary dynamics-cancer progression models or synthetic biology approaches being notable examples. This work delves into a critical and constructive attitude in our current knowledge of how genotypes map onto molecular phenotypes and organismal functions, and discusses theoretical and empirical avenues to broaden and improve this comprehension. As a final goal, this community should aim at deriving an updated picture of evolutionary processes soundly relying on the structural properties of genotype spaces, as revealed by modern techniques of molecular and functional analysis.
This paper develops mathematical models describing the evolutionary dynamics of both asexually and sexually reproducing populations of diploid unicellular organisms. We consider two forms of genome organization. In one case, we assume that the genome consists of two multi-gene chromosomes, while in the second case we assume that each gene defines a separate chromosome. If the organism has $ l $ homologous pairs that lack a functional copy of the given gene, then the fitness of the organism is $ kappa_l $. The $ kappa_l $ are assumed to be monotonically decreasing, so that $ kappa_0 = 1 > kappa_1 > kappa_2 > ... > kappa_{infty} = 0 $. For nearly all of the reproduction strategies we consider, we find, in the limit of large $ N $, that the mean fitness at mutation-selection balance is $ max{2 e^{-mu} - 1, 0} $, where $ N $ is the number of genes in the haploid set of the genome, $ epsilon $ is the probability that a given DNA template strand of a given gene produces a mutated daughter during replication, and $ mu = N epsilon $. The only exception is the sexual reproduction pathway for the multi-chromosomed genome. Assuming a multiplicative fitness landscape where $ kappa_l = alpha^{l} $ for $ alpha in (0, 1) $, this strategy is found to have a mean fitness that exceeds the mean fitness of all of the other strategies. Furthermore, while the other reproduction strategies experience a total loss of viability due to the steady accumulation of deleterious mutations once $ mu $ exceeds $ ln 2 $, no such transition occurs in the sexual pathway. The results of this paper demonstrate a selective advantage for sexual reproduction with fewer and much less restrictive assumptions than previous work.
140 - Adrian L. Melott 2008
Time series analysis of fossil biodiversity of marine invertebrates in the Paleobiology Database (PBDB) shows a significant periodicity at approximately 63 My, in agreement with previous analyses based on the Sepkoski database. I discuss how this result did not appear in a previous analysis of the PBDB. The existence of the 63 My periodicity, despite very different treatment of systematic error in both PBDB and Sepkoski databases strongly argues for consideration of its reality in the fossil record. Cross-spectral analysis of the two datasets finds that a 62 My periodicity coincides in phase by 1.6 My, equivalent to better than the errors in either measurement. Consequently, the two data sets not only contain the same strong periodicity, but its peaks and valleys closely correspond in time. Two other spectral peaks appear in the PBDB analysis, but appear to be artifacts associated with detrending and with the increased interval length. Sampling-standardization procedures implemented by the PBDB collaboration suggest that the signal is not an artifact of sampling bias. Further work should focus on finding the cause of the 62 My periodicity.
Empirical observations show that ecological communities can have a huge number of coexisting species, also with few or limited number of resources. These ecosystems are characterized by multiple type of interactions, in particular displaying cooperative behaviors. However, standard modeling of population dynamics based on Lotka-Volterra type of equations predicts that ecosystem stability should decrease as the number of species in the community increases and that cooperative systems are less stable than communities with only competitive and/or exploitative interactions. Here we propose a stochastic model of population dynamics, which includes exploitative interactions as well as cooperative interactions induced by cross-feeding. The model is exactly solved and we obtain results for relevant macro-ecological patterns, such as species abundance distributions and correlation functions. In the large system size limit, any number of species can coexist for a very general class of interaction networks and stability increases as the number of species grows. For pure mutualistic/commensalistic interactions we determine the topological properties of the network that guarantee species coexistence. We also show that the stationary state is globally stable and that inferring species interactions through species abundance correlation analysis may be misleading. Our theoretical approach thus show that appropriate models of cooperation naturally leads to a solution of the long-standing question about complexity-stability paradox and on how highly biodiverse communities can coexist.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا