Do you want to publish a course? Click here

Euler-scale dynamical fluctuations in non-equilibrium interacting integrable systems

104   0   0.0 ( 0 )
 Added by Gabriele Perfetto
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We derive an exact formula for the scaled cumulant generating function of the time-integrated current associated to an arbitrary ballistically transported conserved charge. Our results rely on the Euler-scale description of interacting, many-body, integrable models out of equilibrium given by the generalized hydrodynamics, and on the large deviation theory. Crucially, our findings extend previous studies by accounting for inhomogeneous and dynamical initial states in interacting systems. We present exact expressions for the first three cumulants of the time-integrated current. Considering the non-interacting limit of our general expression for the scaled cumulant generating function, we further show that for the partitioning protocol initial state our result coincides with previous results of the literature. Given the universality of the generalized hydrodynamics, the expression obtained for the scaled cumulant generating function is applicable to any interacting integrable model obeying the hydrodynamic equations, both classical and quantum.



rate research

Read More

We introduce a model of interacting Random Walk, whose hopping amplitude depends on the number of walkers/particles on the link. The mesoscopic counterpart of such a microscopic dynamics is a diffusing system whose diffusivity depends on the particle density. A non-equilibrium stationary flux can be induced by suitable boundary conditions, and we show indeed that it is mesoscopically described by a Fourier equation with a density dependent diffusivity. A simple mean-field description predicts a critical diffusivity if the hopping amplitude vanishes for a certain walker density. Actually, we evidence that, even if the density equals this pseudo-critical value, the system does not present any criticality but only a dynamical slowing down. This property is confirmed by the fact that, in spite of interaction, the particle distribution at equilibrium is simply described in terms of a product of Poissonians. For mesoscopic systems with a stationary flux, a very effect of interaction among particles consists in the amplification of fluctuations, which is especially relevant close to the pseudo-critical density. This agrees with analogous results obtained for Ising models, clarifying that larger fluctuations are induced by the dynamical slowing down and not by a genuine criticality. The consistency of this amplification effect with altered coloured noise in time series is also proved.
We investigate the robustness of a dynamical phase transition against quantum fluctuations by studying the impact of a ferromagnetic nearest-neighbour spin interaction in one spatial dimension on the non-equilibrium dynamical phase diagram of the fully-connected quantum Ising model. In particular, we focus on the transient dynamics after a quantum quench and study the pre-thermal state via a combination of analytic time-dependent spin-wave theory and numerical methods based on matrix product states. We find that, upon increasing the strength of the quantum fluctuations, the dynamical critical point fans out into a chaotic dynamical phase within which the asymptotic ordering is characterised by strong sensitivity to the parameters and initial conditions. We argue that such a phenomenon is general, as it arises from the impact of quantum fluctuations on the mean-field out of equilibrium dynamics of any system which exhibits a broken discrete symmetry.
131 - Rosemary J. Harris 2015
We consider the effects of long-range temporal correlations in many-particle systems, focusing particularly on fluctuations about the typical behaviour. For a specific class of memory dependence we discuss the modification of the large deviation principle describing the probability of rare currents and show how superdiffusive behaviour can emerge. We illustrate the general framework with detailed calculations for a memory-dependent version of the totally asymmetric simple exclusion process as well as indicating connections to other recent work.
80 - Pedro L. Garrido 2021
We study the behavior of stationary non-equilibrium two-body correlation functions for Diffusive Systems with equilibrium reference states (DSe). A DSe is described at the mesoscopic level by $M$ locally conserved continuum fields that evolve through coupled Langevin equations with white noises. The dynamic is designed such that the system may reach equilibrium states for a set of boundary conditions. In this form, just by changing the equilibrium boundary conditions, we make the system driven to a non-equilibrium stationary state. We decompose the correlations in a known local equilibrium part and another one that contains the non-equilibrium behavior and that we call {it correlations excess} $bar C(x,z)$. We formally derive the differential equations for $bar C$. We define a perturbative expansion around the equilibrium state to solve them order by order. We show that the $bar C$s first-order expansion, $bar C^{(1)}$, is always zero for the unique field case, $M=1$. Moreover $bar C^{(1)}$ is always long-range or zero when $M>1$. Surprisingly we show that their associated fluctuations, the space integrals of $bar C^{(1)}$, are always zero. Therefore, the fluctuations are dominated by the local equilibrium behavior up to second order in the perturbative expansion around the equilibrium. We derive the behaviors of $bar C^{(1)}$ in real space for dimensions $d=1$ and $2$ explicitly, and we apply the analysis to a generic $M=2$ case and, in particular, to a hydrodynamic model where we explicitly compute the two first perturbative orders, $bar C^{(1),(2)}$, and its associated fluctuations.
This paper provides an introduction to some stochastic models of lattice gases out of equilibrium and a discussion of results of various kinds obtained in recent years. Although these models are different in their microscopic features, a unified picture is emerging at the macroscopic level, applicable, in our view, to real phenomena where diffusion is the dominating physical mechanism. We rely mainly on an approach developed by the authors based on the study of dynamical large fluctuations in stationary states of open systems. The outcome of this approach is a theory connecting the non equilibrium thermodynamics to the transport coefficients via a variational principle. This leads ultimately to a functional derivative equation of Hamilton-Jacobi type for the non equilibrium free energy in which local thermodynamic variables are the independent arguments. In the first part of the paper we give a detailed introduction to the microscopic dynamics considered, while the second part, devoted to the macroscopic properties, illustrates many consequences of the Hamilton-Jacobi equation. In both parts several novelties are included.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا