We explore the low-energy regime of quantum chromodynamics subjected to an external magnetic field by deriving the two-loop representations for the entropy density and the magnetization within chiral perturbation theory (CHPT). At fixed temperature, the entropy density drops when the magnetic field becomes stronger. The magnetization induced at finite temperature is negative in the entire parameter region accessible by CHPT. We also point out that the enhancement of the finite-temperature part in the quark condensate is correlated with the decrease of the entropy density.