No Arabic abstract
We systematically construct a series of vector solitary waves in harmonically trapped one-dimensional three-, four-, and five-component Bose-Einstein condensates. These stationary states are continued in chemical potentials from the analytically tractable low-density linear limit of respective states, as independent linear quantum harmonic oscillator states, to the high-density nonlinear Thomas-Fermi regime. A systematic interpolation procedure is proposed to achieve this sequential continuation via a trajectory in the multi-dimensional space of the chemical potentials. The Bogolyubov-de Gennes (BdG) spectra analysis shows that all of the states considered herein can be fully stabilized in suitable chemical potential intervals in the Thomas-Fermi regime. Finally, we present some typical $SU(n)$-rotation-induced and driving-induced dynamics. This method can be extended to higher dimensions and shows significant promise for finding a wide range of solitary waves ahead.
Ultracold dipolar droplets have been realized in a series of ground-breaking experiments, where the stability of the droplet state is attributed to beyond-mean-field effects in the form of the celebrated Lee-Huang-Yang (LHY) correction. We scrutinize the dipolar droplet states in a one-dimensional context using a combination of analytical and numerical approaches, and identify experimentally viable parameters for accessing our findings for future experiments. In particular we identify regimes of stability in the restricted geometry, finding multiple roton instabilities as well as regions supporting quasi-one-dimensional droplet states. By applying an interaction quench to the droplet, a modulational instability is induced and multiple droplets are produced, along with bright solitons and atomic radiation. We also assess the droplets robustness to collisions, revealing population transfer and droplet fission.
Solitons play a fundamental role in dynamics of nonlinear excitations. Here we explore the motion of solitons in one-dimensional uniform Bose-Einstein condensates subjected to a spin-orbit coupling (SOC). We demonstrate that the spin dynamics of solitons is governed by a nonlinear Bloch equation. The spin dynamics influences the orbital motion of the solitons leading to the spin-orbit effects in the dynamics of the macroscopic quantum objects (mean-field solitons). The latter perform oscillations with a frequency determined by the SOC, Raman coupling, and intrinsic nonlinearity. These findings reveal unique features of solitons affected by the SOC, which is confirmed by analytical considerations and numerical simulations of the underlying Gross-Pitaevskii equations.
We study experimentally and theoretically the dynamics of apparent dark soliton stripes in an elongated Bose-Einstein condensate. We show that for the trapping strengths corresponding to our experimental setup, the transverse confinement along one of the tight directions is not strong enough to arrest the formation of solitonic vortices or vortex rings. These solitonic vortices and vortex rings, when integrated along the transverse direction, appear as dark soliton stripes along the longitudinal direction thereby hiding their true character. The latter significantly modifies the interaction dynamics during collision events and can lead to apparent examples of inelasticity and what may appear experimentally even as a merger of two dark soliton stripes. We explain this feature by means of the interaction of two solitonic vortices leading to a sling shot event with one of the solitonic vortices being ejected at a relatively large speed. Furthermore we observe expanding collision bubbles which consist of repeated inelastic collisions of a dark soliton stripe pair with an {it increasing} time interval between collisions.
We demonstrate the feasibility of generation of quasi-stable counter-propagating solitonic structures in an atomic Bose-Einstein condensate confined in a realistic toroidal geometry, and identify optimal parameter regimes for their experimental observation. Using density engineering we numerically identify distinct regimes of motion of the emerging macroscopic excitations, including both solitonic motion along the azimuthal ring direction, such that structures remain visible after multiple collisions even in the presence of thermal fluctuations, and snaking instabilities leading to the decay of the excitations into vortical structures. Our analysis, which considers both mean field effects and fluctuations, is based on the ring trap geometry of Murray et al. Phys. Rev. A 88 053615 2013.
We investigate non-degenerate bound state solitons systematically in multi-component Bose-Einstein condensates, through developing Darboux transformation method to derive exact soliton solutions analytically. In particular, we show that bright solitons with nodes correspond to the excited bound eigen-states in the self-induced effective quantum wells, in sharp contrast to the bright soliton and dark soliton reported before (which usually correspond to ground state and free eigen-state respectively). We further demonstrate that the bound state solitons with nodes are induced by incoherent interactions between solitons in different components. Moreover, we reveal that the interactions between these bound state solitons are usually inelastic, caused by the incoherent interactions between solitons in different components and the coherent interactions between solitons in same component. The bound state solitons can be used to discuss many different physical problems, such as beating dynamics, spin-orbital coupling effects, quantum fluctuations, and even quantum entanglement states.