No Arabic abstract
In this paper, we attribute high braking indices $n>3$ of two magnetars SGR 0501$+$4516 and 1E 2259$+$586 to the decrease in their inclination angles using the double magnetic-dipole model proposed by Hamil et al.(2016). In this model, there are two magnetic moments inside a neutron star, one is generated by the rotation effect of a charged sphere, $M_{1}$, and the other is generated by the magnetization of ferromagnetically ordered material, $M_{2}$. Our calculations indicate that the magnetic moment $M_{2}$ would evolve towards alignment with the spin axis of the two magnetars, and cause their magnetic inclination angles to decrease. We also define a ratio $eta=M_{2}/M_{1}$, which reflects the magnetization degree, and find that the values of $eta$ of the two magnetars are about two-orders of magnitude higher than that of rotationally powered pulsar PSR J1640-4631 with $n=3.15(3)$, assuming that they have the same rate of decrease in their inclination angles.
Magnetars are an extreme, highly magnetized class of isolated neutron stars whose large X-ray luminosity is believed to be driven by their high magnetic field. In this work we study for the first time the possible very high energy gamma-ray emission above 100 GeV from magnetars, observing the sources 4U 0142+61 and 1E 2259+586. We observed the two sources with atmospheric Cherenkov telescopes in the very high energy range (E > 100 GeV). 4U 0142+61 was observed with the MAGIC I telescope in 2008 for ~25 h and 1E 2259+586 was observed with the MAGIC stereoscopic system in 2010 for ~14 h. The data were analyzed with the standard MAGIC analysis software. Neither magnetar was detected. Upper limits to the differential and integral flux above 200 GeV were computed using the Rolke algorithm. We obtain integral upper limits to the flux of 1.52*10^-12cm^-2 s^-1 and 2.7*10^-12cm^-2 s^-1 with a confidence level of 95% for 4U 0142+61 and 1E 2259+586, respectively. The resulting differential upper limits are presented together with X-ray data and upper limits in the GeV energy range.
We report on new broad band spectral and temporal observations of the magnetar 1E 2259+586, which is located in the supernova remnant CTB 109. Our data were obtained simultaneously with the Nuclear Spectroscopic Telescope Array (NuSTAR) and Swift, and cover the energy range from 0.5-79 keV. We present pulse profiles in various energy bands and compare them to previous RXTE results. The NuSTAR data show pulsations above 20 keV for the first time and we report evidence that one of the pulses in the double-peaked pulse profile shifts position with energy. The pulsed fraction of the magnetar is shown to increase strongly with energy. Our spectral analysis reveals that the soft X-ray spectrum is well characterized by an absorbed double-blackbody or blackbody plus power-law model in agreement with previous reports. Our new hard X-ray data, however, suggests that an additional component, such as a power-law, is needed to describe the NuSTAR and Swift spectrum. We also fit the data with the recently developed coronal outflow model by Beloborodov for hard X-ray emission from magnetars. The outflow from a ring on the magnetar surface is statistically preferred over outflow from a polar cap.
We report on the quiescent state of the Soft Gamma Repeater SGR 0501+4516 observed by XMM-Newton on 2009 August 30. The source exhibits an absorbed flux ~75 times lower than that measured at the peak of the 2008 outburst, and a rather soft spectrum, with the same value of the blackbody temperature observed with ROSAT back in 1992. This new observation is put into the context of all existing X-ray data since its discovery in August 2008, allowing us to complete the study of the timing and spectral evolution of the source from outburst until its quiescent state. The set of deep XMM-Newton observations performed during the few-years timescale of its outburst allows us to monitor the spectral characteristics of this magnetar as a function of its rotational period, and their evolution along these years. After the first ~10 days, the initially hot and bright surface spot progressively cooled down during the decay. We discuss the behaviour of this magnetar in the context of its simulated secular evolution, inferring a plausible dipolar field at birth of 3x10^14 G, and a current (magneto-thermal) age of ~10 kyr.
Magnetic field geometry is expected to play a fundamental role in magnetar activity. The discovery of a phase-variable absorption feature in the X-ray spectrum of SGR 0418+5729, interpreted as cyclotron resonant scattering, suggests the presence of very strong non-dipolar components in the magnetic fields of magnetars. We performed a deep XMM-Newton observation of pulsar 1E 2259+586, to search for spectral features due to intense local magnetic fields. In the phase-averaged X-ray spectrum, we found evidence for a broad absorption feature at very low energy (0.7 keV). If the feature is intrinsic to the source, it might be due to resonant scattering/absorption by protons close to star surface. The line energy implies a magnetic field of ~ 10^14 G, roughly similar to the spin-down measure, ~ 6x10^13 G. Examination of the X-ray phase-energy diagram shows evidence for a further absorption feature, the energy of which strongly depends on the rotational phase (E >~ 1 keV ). Unlike similar features detected in other magnetar sources, notably SGR 0418+5729, it is too shallow and limited to a small phase interval to be modeled with a narrow phase-variable cyclotron absorption line. A detailed phase-resolved spectral analysis reveals significant phase-dependent variability in the continuum, especially above 2 keV. We conclude that all the variability with phase in 1E 2259+586 can be attributed to changes in the continuum properties which appear consistent with the predictions of the Resonant Compton Scattering model.
We report on the timing and spectral properties of the soft X-ray emission from the magnetar 1E 2259+586 from January 2013, $sim 8$ months after the detection of an anti-glitch, until September 2019, using the Neil Gehrels Swift and NICER observatories. During this time span, we detect two timing discontinuities. The first, occurring around 5 years after the April 2012 anti-glitch, is a relatively large spin-up glitch with a fractional amplitude $Delta u/ u=1.24(2)times10^{-6}$. We find no evidence for flux enhancement or change in the spectral or pulse profile shape around the time of this glitch. This is consistent with the picture that a significant number of magnetar spin-up glitches are radiatively-quiet. Approximately 1.5 years later in April 2019, 1E 2259+586 exhibited an anti-glitch with spin-down of a fractional amplitude $Delta u/ u=-5.8(1)times10^{-7}$; similar to the fractional change detected in 2012. We do not, however, detect any change to the pulse-profile shape or increase in the rms pulsed flux of the source, nor do we see any possible bursts from its direction around the time of the anti-glitch; all of which occurred during the 2012 event. Hence, similar to spin-up glitches, anti-glitches can occur silently. This may suggest that these phenomena originate in the neutron star interior, and that their locale and triggering mechanism do not necessarily have to be connected to the magnetosphere. Lastly, our observations suggest that the occurrence rate of spin-up and spin-down glitches is about the same in 1E 2259+586, with the former having a larger net fractional change.