Anomalous Andreev Reflection on a Torus-Shaped Fermi Surface


Abstract in English

Andreev reflection (AR) refers to the electron-hole conversion at the normal metal-superconductor interface. In a three-dimensional metal with spherical Fermi surface, retro (specular) AR can occur with the sign reversal of all three (a single) components of particle velocity. Here, we predict a novel type of AR with the inversion of two velocity components, dubbed anomalous-trajectory Andreev reflection (AAR), which can be realized in a class of materials with torus-shaped Fermi surface, such as doped nodal line semimetals. For its toroidal circle perpendicular to the interface, the Fermi torus doubles the AR channels and generates multiple AR processes. In particular, the AAR and retro AR are found to dominate electron transport in the light and heavy doping regimes, respectively. We show that the AAR visibly manifests as a ridge structure in the spatially resolved nonlocal conductance, in contrast to the peak structure for the retro AR. Our work opens a new avenue for the AR spectroscopy and offers a clear transport signature of torus-shaped Fermi surface.

Download