Do you want to publish a course? Click here

Anomalous Andreev Reflection on a Torus-Shaped Fermi Surface

183   0   0.0 ( 0 )
 Added by Wei Chen
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Andreev reflection (AR) refers to the electron-hole conversion at the normal metal-superconductor interface. In a three-dimensional metal with spherical Fermi surface, retro (specular) AR can occur with the sign reversal of all three (a single) components of particle velocity. Here, we predict a novel type of AR with the inversion of two velocity components, dubbed anomalous-trajectory Andreev reflection (AAR), which can be realized in a class of materials with torus-shaped Fermi surface, such as doped nodal line semimetals. For its toroidal circle perpendicular to the interface, the Fermi torus doubles the AR channels and generates multiple AR processes. In particular, the AAR and retro AR are found to dominate electron transport in the light and heavy doping regimes, respectively. We show that the AAR visibly manifests as a ridge structure in the spatially resolved nonlocal conductance, in contrast to the peak structure for the retro AR. Our work opens a new avenue for the AR spectroscopy and offers a clear transport signature of torus-shaped Fermi surface.



rate research

Read More

The quasi-bound states of a superconducting quantum dot that is weakly coupled to a normal metal appear as resonances in the Andreev reflection probability, measured via the differential conductance. We study the evolution of these Andreev resonances when an external parameter (such as magnetic field or gate voltage) is varied, using a random-matrix model for the $Ntimes N$ scattering matrix. We contrast the two ensembles with broken time-reversal symmetry, in the presence or absence of spin-rotation symmetry (class C or D). The poles of the scattering matrix in the complex plane, encoding the center and width of the resonance, are repelled from the imaginary axis in class C. In class D, in contrast, a number $proptosqrt{N}$ of the poles has zero real part. The corresponding Andreev resonances are pinned to the middle of the gap and produce a zero-bias conductance peak that does not split over a range of parameter values (Y-shaped profile), unlike the usual conductance peaks that merge and then immediately split (X-shaped profile).
258 - Qiang Cheng , Qing-Feng Sun 2021
We propose a universal method to detect the specular Andreev reflection taking the simple two dimensional Weyl nodal-line semimetal-superconductor double-junction structure as an example. The quasiclassical quantization conditions are established for the energy levels of bound states formed in the middle semimetal along a closed path. The establishment of the conditions is completely based on the intrinsic character of the specularly reflected hole which has the same sign relation of its wave vector and group velocity with the incident electron. This brings about the periodic oscillation of conductance with the length of the middle semimetal, which is lack for the retro-Andreev reflected hole having the opposite sign relation with the incident electron. The positions of the conductance peaks and the oscillation period can be precisely predicted by the quantization conditions. Our detection method is irrespective of the details of the materials, which may promote the experimental detection of and further researches on the specular Andreev reflection as well as its applications in superconducting electronics.
Using the tight binding model and the non-equilibrium Green function method, we study Andreev reflection in graphene-superconductor junction, where graphene has two nonequal Dirac Cones split in energy and therefore time reversal symmetry is broken. Due to the anti-chiral edge states of the current graphene model, an incident electron travelling along the edges makes distinct contribution to Andreev reflections. In a two-terminal device, because Andreev retro-reflection is not allowed for just the anti-chiral edges, in this case the mutual scattering between edge and bulk states is necessary, which leads that the coefficient of Andreev retro-reflection is always symmetrical about the incident energy. In a four-terminal junction, however, the edges are parallel to the interface of superconductor and graphene, so at the interface an incident electron travelling along the edges can be retro-reflected as a hole into bulk modes, or specularly reflected as a hole into anti-chiral edge states again. It is noted that, the coefficient of specular Andreev reflection keeps symmetric as to the incident energy of electron which is consistent with the reported results before, however the coefficient of Andreev retro-reflection shows an unexpected asymmetrical behavior due to the presence of anti-chiral edge states. Our results present some new ideas to study the anti-chiral edge modes and Andreev reflection for a graphene model with the broken time reversal symmetry.
We report on the results of directional point-contact Andreev-reflection (PCAR) measurements in Ba(Fe_{1-x}Co_x)2As2 single crystals and epitaxial c-axis oriented films with x = 0.08 as well as in Ca(Fe_{1-x}Co_x)2As2 single crystals with x = 0.06. The PCAR spectra are analyzed within the two-band 3D version of the Blonder-Tinkham-Klapwijk model for Andreev reflection we recently developed, and that makes use of an analytical expression for the Fermi surface that mimics the one calculated within the density-functional theory (DFT). The spectra in Ca(Fe_{0.94}Co_{0.06})2As2 unambiguously demonstrate the presence of nodes or zeros in the small gap. In Ba(Fe_{0.92}Co_{0.08})2As2, the ab-plane spectra in single crystals can be fitted by assuming two nodeless gaps, but this model fails to fit the c-axis ones in epitaxial films. All these results are discussed in comparison with recent theoretical predictions about the occurrence of accidental 3D nodes and the presence of hot spots in the gaps of 122 compounds.
178 - Z. D. Kvon 1999
Low temperature transport measurements on superconducting film - normal metal wire - superconducting film (SNS) junctions fabricated on the basis of 6 nm thick superconducting polycrystalline PtSi films are reported. The structures with the normal metal wires of two different lengths L=1.5 $mu$m and L=6$mu$m and the same widths W=0.3$mu$m are studied. Zero bias resistance dip related to pair current proximity effect is observed for all junctions whereas the subharmonic energy gap structure originating from phase coherent multiple Andreev reflections have occurs only in the SNS junctions with short wires.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا