Do you want to publish a course? Click here

Investigating $gamma$-ray halos around three HAWC bright sources in Fermi-LAT data

137   0   0.0 ( 0 )
 Added by Mattia Di Mauro
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Numerous extended sources around Galactic pulsars have shown significant $gamma$-ray emission from GeV to TeV energies, revealing hundreds of TeV energy electrons scattering off of the underlying photon fields through inverse Compton scattering (ICS). HAWC TeV gamma-ray observations of few-degree extended emission around the pulsars Geminga and Monogem, and LAT GeV emission around Geminga, suggest that systems older than 10-100 kyr have multi-TeV $e^pm$ propagating beyond the SNR-PWN system into the interstellar medium. Following the discovery of few $gamma$-ray sources by HAWC at energies E$>100$ TeV, we investigate the presence of an extended $gamma$-ray emission in Fermi-LAT data around the three brightest sources detected by HAWC up to 100 TeV. We find an extended emission of $theta_{68} = 1.00^{+0.05}_{-0.07}$ deg around eHWC J1825-134 and $theta_{68} = 0.71pm0.10$ deg eHWC J1907+063. The analysis with ICS templates on Fermi-LAT data point to diffusion coefficient values which are significantly lower than the average Galactic one. When studied along with HAWC data, the $gamma$-ray Fermi-LAT data provide invaluable insight into the very high-energy electron and positron parent populations.



rate research

Read More

160 - M. L. Ahnen 2019
The HAWC Collaboration released the 2HWC catalog of TeV sources, in which 19 show no association with any known high-energy (HE; E > 10 GeV) or very-high-energy (VHE; E > 300 GeV) sources. This catalog motivated follow-up studies by both the MAGIC and Fermi-LAT observatories with the aim of investigating gamma-ray emission over a broad energy band. In this paper, we report the results from the first joint work between HAWC, MAGIC and Fermi-LAT on three unassociated HAWC sources: 2HWC J2006+341, 2HWC J1907+084* and 2HWC J1852+013*. Although no significant detection was found in the HE and VHE regimes, this investigation shows that a minimum 1 degree extension (at 95% confidence level) and harder spectrum in the GeV than the one extrapolated from HAWC results are required in the case of 2HWC J1852+013*, while a simply minimum extension of 0.16 degrees (at 95% confidence level) can already explain the scenario proposed by HAWC for the remaining sources. Moreover, the hypothesis that these sources are pulsar wind nebulae is also investigated in detail.
We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. We report the discovery of three radio and gamma-ray millisecond pulsars (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind gamma-ray pulsation searches. They seem to be relatively normal, nearby (<=2 kpc) millisecond pulsars. These observations, in combination with the Fermi detection of gamma-rays from other known radio MSPs, imply that most, if not all, radio MSPs are efficient gamma-ray producers. The gamma-ray spectra of the pulsars are power-law in nature with exponential cutoffs at a few GeV, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Their soft X-ray luminosities of ~10^{30-31} erg/s are typical of the rare radio MSPs seen in X-rays.
The HAWC (High Altitude Water Cherenkov) collaboration recently published their 2HWC catalog, listing 39 very high energy (VHE; >100~GeV) gamma-ray sources based on 507 days of observation. Among these, there are nineteen sources that are not associated with previously known TeV sources. We have studied fourteen of these sources without known counterparts with VERITAS and Fermi-LAT. VERITAS detected weak gamma-ray emission in the 1~TeV-30~TeV band in the region of DA 495, a pulsar wind nebula coinciding with 2HWC J1953+294, confirming the discovery of the source by HAWC. We did not find any counterpart for the selected fourteen new HAWC sources from our analysis of Fermi-LAT data for energies higher than 10 GeV. During the search, we detected GeV gamma-ray emission coincident with a known TeV pulsar wind nebula, SNR G54.1+0.3 (VER J1930+188), and a 2HWC source, 2HWC J1930+188. The fluxes for isolated, steady sources in the 2HWC catalog are generally in good agreement with those measured by imaging atmospheric Cherenkov telescopes. However, the VERITAS fluxes for SNR G54.1+0.3, DA 495, and TeV J2032+4130 are lower than those measured by HAWC and several new HAWC sources are not detected by VERITAS. This is likely due to a change in spectral shape, source extension, or the influence of diffuse emission in the source region.
Machine learning is an automatic technique that is revolutionizing scientific research, with innovative applications and wide use in astrophysics. The aim of this study was to developed an optimized version of an Artificial Neural Network machine learning method for classifying blazar candidates of uncertain type detected by the Fermi Large Area Telescope (LAT) gamma-ray instrument. The initial study used information from gamma-ray light curves present in the LAT 4-year Source Catalog. In this study we used additionally gamma-ray spectra and multiwavelength data, and certain statistical methods in order to improve classification. The final result of this study increased the classification performance by about 80 per cent with respect to previous method, leaving only 15 unclassified blazars instead of 77 out of total 573 in the LAT catalog. Other blazars were classified into BL Lacs and FSRQ in ratio of about two to one, similar to previous study. In both studies a precision value of 90 per cent was used as a threshold for classification.
The high sensitivity of the Fermi-LAT (Large Area Telescope) offers the first opportunity to study faint and extended GeV sources such as pulsar wind nebulae (PWNe). After one year of observation the LAT detected and identified three pulsar wind nebulae: the Crab Nebula, Vela-X and the PWN inside MSH 15-52. In the meantime, the list of LAT detected pulsars increased steadily. These pulsars are characterized by high energy loss rates from ~3 times 10^{33} erg s$^{-1}$ to 5 times 10$^{38}$ erg s$^{-1}$ and are therefore likely to power a PWN. This paper summarizes the search for PWNe in the off-pulse windows of 54 LAT-detected pulsars using 16 months of survey observations. Ten sources show significant emission, seven of these likely being of magnetospheric origin. The detection of significant emission in the off-pulse interval offers new constraints on the gamma-ray emitting regions in pulsar magnetospheres. The three other sources with significant emission are the Crab Nebula, Vela-X and a new pulsar wind nebula candidate associated with the LAT pulsar PSR J1023-5746, coincident with the TeV source HESS J1023-575. We further explore the association between the H.E.S.S. and the Fermi source by modeling its spectral energy distribution. Flux upper limits derived for the 44 remaining sources are used to provide new constraints on famous PWNe that have been detected at keV and/or TeV energies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا