Ideals generated by traces or by supertraces in the symplectic reflection algebra $H_{1, u}(I_2(2m+1))$ II


Abstract in English

The algebra $mathcal H:= H_{1, u}(I_2(2m+1))$ of observables of the Calogero model based on the root system $I_2(2m+1)$ has an $m$-dimensional space of traces and an $(m+1)$-dimensional space of supertraces. In the preceding paper we found all values of the parameter $ u$ for which either the space of traces contains a~degenerate nonzero trace $tr_{ u}$ or the space of supertraces contains a~degenerate nonzero supertrace $str_{ u}$ and, as a~consequence, the algebra $mathcal H$ has two-sided ideals: one consisting of all vectors in the kernel of the form $B_{tr_{ u}}(x,y)=tr_{ u}(xy)$ or another consisting of all vectors in the kernel of the form $B_{str_{ u}}(x,y)=str_{ u}(xy)$. We noticed that if $ u=frac z {2m+1}$, where $zin mathbb Z setminus (2m+1) mathbb Z$, then there exist both a degenerate trace and a~degenerate supertrace on $mathcal H$. Here we prove that the ideals determined by these degenerate forms coincide.

Download