Do you want to publish a course? Click here

Energy Loss in Holographic Anisotropic Model for Heavy Quarks in External Magnetic Field

69   0   0.0 ( 0 )
 Added by Pavel Slepov
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Energy loss in anisotropic hot dense QGP in external magnetic field is studied within holographic approach. Energy loss is calculated by estimation of behaviour of the spatial Wilson loops using the effective potential technique. We examine the dependence of the effective potential on the spatial Wilson loops orientation in fully anisotropic background. For this purpose we obtain general formulas for the effective potential and study appearance of the effective potential dynamical wall. We consider particular fully anisotropic model [arXiv:2011.07023] supported by Einstein-Dilaton-three-Maxwell action. The effective potential strongly depends on the parameters of anisotropy and magnetic field, therefore the energy loss depends on physical parameters $-$ $T$, $mu$, $c_B$ and orientation. Orientation is determined by angles between the moving heavy quark velocity, the axis of heavy ions collision and their impact parameter vector.



rate research

Read More

We present a five-dimensional fully anisotropic holographic model for heavy quarks supported by Einstein-dilaton-three-Maxwell action; one of the Maxwell fields is related to an external magnetic field. Influence of the external magnetic field on the 5-dim black hole solution and the confinement/deconfinement phase diagram is considered. The effect of the inverse magnetic catalyses is revealed and positions of critical end points are found.
We present a five-dimensional anisotropic holographic model for light quarks supported by Einstein-dilaton-two-Maxwell action. This model generalizing isotropic holographic model with light quarks is characterized by a Van der Waals-like phase transition between small and large black holes. We compare the location of the phase transition for Wilson loops with the positions of the phase transition related to the background instability and describe the QCD phase diagram in the thermodynamic plane -- temperature $T$ and chemical potential $mu$. The Cornell potential behavior in this anisotropic model is also studied. The asymptotics of the Cornell potential at large distances strongly depend on the parameter of anisotropy and orientation. There is also a nontrivial dependence of the Cornell potential on the boundary conditions of the dilaton field and parameter of anisotropy. With the help of the boundary conditions for the dilaton field one fits the results of the lattice calculations for the string tension as a function of temperature in isotropic case and then generalize to the anisotropic one.
We study the influence of a background magnetic field on the $J/psi$ vector meson in a DBI-extension of the soft wall model, building upon our earlier work Phys. Rev. D91, 086002 (2015). In this specific holographic QCD model, we discuss the heavy quark number susceptibility and diffusion constants of charm quarks and their dependence on the magnetic field by either a hydrodynamic expansion or by numerically solving the differential equation. This allows us to determine the response of these transport coefficients to the magnetic field. The effects of the latter are considered both from a direct as indirect (medium) viewpoint. As expected, we find a magnetic field induced anisotropic diffusion, with a stronger diffusion in the longitudinal direction compared to the transversal one. We backup, at least qualitatively, our findings with a hanging string analysis of heavy quark diffusion in a magnetic field. From the quark number susceptibility we can extract an estimate for the effective deconfinement temperature in the heavy quark sector, reporting consistency with the phenomenon of inverse magnetic catalysis.
185 - Shuai Y.F. Liu , Ralf Rapp 2020
The radiative energy loss of fast partons traveling through the quark-gluon plasma (QGP) is commonly studied within perturbative QCD (pQCD). Nonperturbative (NP) effects, which are expected to become important near the critical temperature, have been much less investigated. Here, we utilize a recently developed $T$-matrix approach to incorporate NP effects for gluon emission off heavy quarks propagating through the QGP. We set up four cases that contain, starting from a Born diagram calculation with color-Coulomb interaction, an increasing level of NP components, by subsequently including (remnants of) confining interactions, resummation in the heavy-light scattering amplitude, and off-shell spectral functions for both heavy and light partons. For each case we compute the power spectra of the emitted gluons, heavy-quark transport coefficients (drag and transverse-momentum broadening, $hat{q}$), and the path-length dependent energy loss within a QGP brick at fixed temperature. Investigating the differences in these quantities between the four cases illustrates how NP mechanisms affect gluon radiation processes. While the baseline perturbative processes experience a strong suppression of soft radiation due to thermal masses of the emitted gluons, confining interactions, ladder resummations and broad spectral functions (re-)generate a large enhancement toward low momenta and low temperatures. For example, for a 10 GeV charm quark at 200 MeV temperature, they enhance the transport coefficients by up to a factor of 10, while the results smoothly converge to perturbative results at sufficiently hard scales.
We study the energy loss of a rotating infinitely massive quark moving, at constant velocity, through an anisotropic strongly-coupled N=4 plasma from holography. It is shown that, similar to the isotropic plasma, the energy loss of the rotating quark is due to either the drag force or radiation with a continuous crossover from drag-dominated regime to the radiation dominated regime. We find that the anisotropy has a significant effect on the energy loss of the heavy quark, specially in the crossover regime. We argue that the energy loss due to radiation in anisotropic media is less than the isotropic case. Interestingly this is similar to analogous calculations for the energy loss in weakly coupled anisotropic plasma.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا