Dirac carriers in graphene are commonly characterized by a pseudospin degree of freedom, arising from the degeneracy of the two inequivalent sublattices. The inherent chirality of the quasiparticles leads to a topologically non-trivial band structure, where the in-plane component of sublattice spin and momentum are intertwined. Equivalently, sublattice imbalance is intimately connected with angular momentum, inducing a torque of opposite sign at each Dirac point. In this work we develop an intuitive picture that associates sublattice spin and winding number with angular momentum. We develop a microscopic perturbative model to obtain the finite angular momentum contributions along the main crystallographic directions. Our results can be employed to determine the angular dependence of the g-factor and of light absorption in honeycomb bipartite structures.