Do you want to publish a course? Click here

DA-HGT: Domain Adaptive Heterogeneous Graph Transformer

70   0   0.0 ( 0 )
 Added by Ke Xu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Domain adaptation using graph networks learns label-discriminative and network-invariant node embeddings by sharing graph parameters. Most existing works focus on domain adaptation of homogeneous networks. The few works that study heterogeneous cases only consider shared node types but ignore private node types in individual networks. However, for given source and target heterogeneous networks, they generally contain shared and private node types, where private types bring an extra challenge for graph domain adaptation. In this paper, we investigate Heterogeneous Information Networks (HINs) with partially shared node types and propose a novel Domain Adaptive Heterogeneous Graph Transformer (DA-HGT) to handle the domain shift between them. DA-HGT can not only align the distribution of identical-type nodes and edges in two HINs but also make full use of different-type nodes and edges to improve the performance of knowledge transfer. Extensive experiments on several datasets demonstrate that DA-HGT can outperform state-of-the-art methods in various domain adaptation tasks across heterogeneous networks.



rate research

Read More

Recent years have witnessed the emerging success of graph neural networks (GNNs) for modeling structured data. However, most GNNs are designed for homogeneous graphs, in which all nodes and edges belong to the same types, making them infeasible to represent heterogeneous structures. In this paper, we present the Heterogeneous Graph Transformer (HGT) architecture for modeling Web-scale heterogeneous graphs. To model heterogeneity, we design node- and edge-type dependent parameters to characterize the heterogeneous attention over each edge, empowering HGT to maintain dedicated representations for different types of nodes and edges. To handle dynamic heterogeneous graphs, we introduce the relative temporal encoding technique into HGT, which is able to capture the dynamic structural dependency with arbitrary durations. To handle Web-scale graph data, we design the heterogeneous mini-batch graph sampling algorithm---HGSampling---for efficient and scalable training. Extensive experiments on the Open Academic Graph of 179 million nodes and 2 billion edges show that the proposed HGT model consistently outperforms all the state-of-the-art GNN baselines by 9%--21% on various downstream tasks.
107 - Yuan Yao , Xutao Li , Yu Zhang 2020
Heterogeneous domain adaptation (HDA) tackles the learning of cross-domain samples with both different probability distributions and feature representations. Most of the existing HDA studies focus on the single-source scenario. In reality, however, it is not uncommon to obtain samples from multiple heterogeneous domains. In this article, we study the multisource HDA problem and propose a conditional weighting adversarial network (CWAN) to address it. The proposed CWAN adversarially learns a feature transformer, a label classifier, and a domain discriminator. To quantify the importance of different source domains, CWAN introduces a sophisticated conditional weighting scheme to calculate the weights of the source domains according to the conditional distribution divergence between the source and target domains. Different from existing weighting schemes, the proposed conditional weighting scheme not only weights the source domains but also implicitly aligns the conditional distributions during the optimization process. Experimental results clearly demonstrate that the proposed CWAN performs much better than several state-of-the-art methods on four real-world datasets.
Graph neural networks (GNNs) have been widely used in representation learning on graphs and achieved state-of-the-art performance in tasks such as node classification and link prediction. However, most existing GNNs are designed to learn node representations on the fixed and homogeneous graphs. The limitations especially become problematic when learning representations on a misspecified graph or a heterogeneous graph that consists of various types of nodes and edges. In this paper, we propose Graph Transformer Networks (GTNs) that are capable of generating new graph structures, which involve identifying useful connections between unconnected nodes on the original graph, while learning effective node representation on the new graphs in an end-to-end fashion. Graph Transformer layer, a core layer of GTNs, learns a soft selection of edge types and composite relations for generating useful multi-hop connections so-called meta-paths. Our experiments show that GTNs learn new graph structures, based on data and tasks without domain knowledge, and yield powerful node representation via convolution on the new graphs. Without domain-specific graph preprocessing, GTNs achieved the best performance in all three benchmark node classification tasks against the state-of-the-art methods that require pre-defined meta-paths from domain knowledge.
271 - Edward Choi , Zhen Xu , Yujia Li 2019
Effective modeling of electronic health records (EHR) is rapidly becoming an important topic in both academia and industry. A recent study showed that using the graphical structure underlying EHR data (e.g. relationship between diagnoses and treatments) improves the performance of prediction tasks such as heart failure prediction. However, EHR data do not always contain complete structure information. Moreover, when it comes to claims data, structure information is completely unavailable to begin with. Under such circumstances, can we still do better than just treating EHR data as a flat-structured bag-of-features? In this paper, we study the possibility of jointly learning the hidden structure of EHR while performing supervised prediction tasks on EHR data. Specifically, we discuss that Transformer is a suitable basis model to learn the hidden EHR structure, and propose Graph Convolutional Transformer, which uses data statistics to guide the structure learning process. The proposed model consistently outperformed previous approaches empirically, on both synthetic data and publicly available EHR data, for various prediction tasks such as graph reconstruction and readmission prediction, indicating that it can serve as an effective general-purpose representation learning algorithm for EHR data.
Graph generative models have been extensively studied in the data mining literature. While traditional techniques are based on generating structures that adhere to a pre-decided distribution, recent techniques have shifted towards learning this distribution directly from the data. While learning-based approaches have imparted significant improvement in quality, some limitations remain to be addressed. First, learning graph distributions introduces additional computational overhead, which limits their scalability to large graph databases. Second, many techniques only learn the structure and do not address the need to also learn node and edge labels, which encode important semantic information and influence the structure itself. Third, existing techniques often incorporate domain-specific rules and lack generalizability. Fourth, the experimentation of existing techniques is not comprehensive enough due to either using weak evaluation metrics or focusing primarily on synthetic or small datasets. In this work, we develop a domain-agnostic technique called GraphGen to overcome all of these limitations. GraphGen converts graphs to sequences using minimum DFS codes. Minimum DFS codes are canonical labels and capture the graph structure precisely along with the label information. The complex joint distributions between structure and semantic labels are learned through a novel LSTM architecture. Extensive experiments on million-sized, real graph datasets show GraphGen to be 4 times faster on average than state-of-the-art techniques while being significantly better in quality across a comprehensive set of 11 different metrics. Our code is released at https://github.com/idea-iitd/graphgen.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا