No Arabic abstract
We use particle tracking velocimetry to study Eulerian and Lagrangian second-order statistics of superfluid $^4$He grid turbulence. The Eulerian energy spectra at scales larger than the mean distance between quantum vortex lines behave classically with close to Kolmogorov-1941 scaling and are almost isotropic. The Lagrangian second-order structure functions and frequency power spectra, measured at scales comparable with the intervortex distance, demonstrate a sharp transition from nearly-classical behavior to a regime dominated by the motion of quantum vortex lines. Employing the homogeneity of the flow, we verify a set of relations that connect various second-order statistical objects that stress different aspects of turbulent behavior, allowing a multifaceted analysis. We use the two-way bridge relations between Eulerian energy spectra and second-order structure functions to reconstruct the energy spectrum from the known second-order velocity structure function and vice versa. The Lagrangian frequency spectrum reconstructed from the measured Eulerian spectrum using the Eulerian-Lagrangian bridge differs from the measured Lagrangian spectrum in the quasi-classical range which calls for further investigation.
We develop an analytic theory of strong anisotropy of the energy spectra in the thermally-driven turbulent counterflow of superfluid He-4. The key ingredients of the theory are the three-dimensional differential closure for the vector of the energy flux and the anisotropy of the mutual friction force. We suggest an approximate analytic solution of the resulting energy-rate equation, which is fully supported by the numerical solution. The two-dimensional energy spectrum is strongly confined in the direction of the counterflow velocity. In agreement with the experiment, the energy spectra in the direction orthogonal to the counterflow exhibit two scaling ranges: a near-classical non-universal cascade-dominated range and a universal critical regime at large wavenumbers. The theory predicts the dependence of various details of the spectra and the transition to the universal critical regime on the flow parameters. This article is a part of the theme issue Scaling the turbulence edifice.
There are two commonly discussed forms of quantum turbulence in superfluid $^4$He above 1K: in one there is a random tangle of quantizes vortex lines, existing in the presence of a non-turbulent normal fluid; in the second there is a coupled turbulent motion of the two fluids, often exhibiting quasi-classical characteristics on scales larger than the separation between the quantized vortex lines in the superfluid component. The decay of vortex line density, $L$, in the former case is often described by the equation $dL/dt=-chi_2 (kappa/2pi)L^2$, where $kappa$ is the quantum of circulation, and $chi_2$ is a dimensionless parameter of order unity. The decay of total turbulent energy, $E$, in the second case is often characterized by an effective kinematic viscosity, $ u$, such that $dE/dt=- u kappa^2 L^2$. We present new values of $chi_2$ derived from numerical simulations and from experiment, which we compare with those derived from a theory developed by Vinen and Niemela. We summarise what is presently known about the values of $ u$ from experiment, and we present a brief introductory discussion of the relationship between $chi_2$ and $ u$, leaving a more detailed discussion to a later paper.
We report a detailed analysis of the energy spectra, second- and high-order structure functions of velocity differences in superfluid $^4$He counterflow turbulence, measured in a wide range of temperatures and heat fluxes. We show that the one-dimensional energy spectrum $E_{xz} (k_y)$ (averaged over the $xz$-plane, parallel to the channel wall), directly measured as a function of the wall-normal wave-vector $k_y$, gives more detailed information on the energy distribution over scales than the corresponding second-order structure function $S_{2}(delta_y)$. In particular, we discover two intervals of $k_y$ with different apparent exponents: $E_{xz} (k_y)propto k_y^{-m_C}$ for $klesssim k_times$ and $E_{xz} (k_y)propto k_y^{-m_F}$ for $kgtrsim k_times$. Here $k_times$ denotes wavenumber that separate scales with relatively strong (for $klesssim k_times$) and relatively weak (for $kgtrsim k_times$) coupling between the normal-fluid and superfluid velocity components. We interpret these $k$-ranges as cascade-dominated and mutual friction-dominated intervals, respectively. General behavior of the experimental spectra $E_{xz}(k_y)$ agree well with the predicted spectra [Phys. Rev. B 97, 214513 (2018)]. Analysis of the $n$-th order structure functions statistics shows that in the energy-containing interval the statistics of counterflow turbulence is close to Gaussian, similar to the classical hydrodynamic turbulence. In the cascade- and mutual friction-dominated intervals we found some modest enhancement of intermittency with respect of its level in classical turbulence. However, at small scales, the intermittency becomes much stronger than in the classical turbulence.
Collisions in a beam of unidirectional quantized vortex rings of nearly identical radii $R$ in superfluid $^4$He in the limit of zero temperature (0.05 K) were studied using time-of-flight spectroscopy. Reconnections between two primary rings result in secondary vortex loops of both smaller and larger radii. Discrete steps in the distribution of flight times, due to the limits on the earliest possible arrival times of secondary loops created after either one or two consecutive reconnections, are observed. The density of primary rings was found to be capped at the value $500{rm ,cm}^{-2} R^{-1}$ independent of the injected density. This is due to collisions between rings causing piling-up of many other vortex rings. Both observations are in quantitative agreement with our theory.
We report on a combined theoretical and numerical study of counterflow turbulence in superfluid $^{4}$He in a wide range of parameters. The energy spectra of the velocity fluctuations of both the normal-fluid and superfluid components are strongly anisotropic. The angular dependence of the correlation between velocity fluctuations of the two components plays the key role. A selective energy dissipation intensifies as scales decrease, with the streamwise velocity fluctuations becoming dominant. Most of the flow energy is concentrated in a wavevector plane which is orthogonal to the direction of the counterflow. The phenomenon becomes more prominent at higher temperatures as the coupling between the components depends on the temperature and the direction with respect to the counterflow velocity.