Do you want to publish a course? Click here

Large-Scale Generative Data-Free Distillation

334   0   0.0 ( 0 )
 Added by Liangchen Luo
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Knowledge distillation is one of the most popular and effective techniques for knowledge transfer, model compression and semi-supervised learning. Most existing distillation approaches require the access to original or augmented training samples. But this can be problematic in practice due to privacy, proprietary and availability concerns. Recent work has put forward some methods to tackle this problem, but they are either highly time-consuming or unable to scale to large datasets. To this end, we propose a new method to train a generative image model by leveraging the intrinsic normalization layers statistics of the trained teacher network. This enables us to build an ensemble of generators without training data that can efficiently produce substitute inputs for subsequent distillation. The proposed method pushes forward the data-free distillation performance on CIFAR-10 and CIFAR-100 to 95.02% and 77.02% respectively. Furthermore, we are able to scale it to ImageNet dataset, which to the best of our knowledge, has never been done using generative models in a data-free setting.



rate research

Read More

Knowledge Distillation (KD) has made remarkable progress in the last few years and become a popular paradigm for model compression and knowledge transfer. However, almost all existing KD algorithms are data-driven, i.e., relying on a large amount of original training data or alternative data, which is usually unavailable in real-world scenarios. In this paper, we devote ourselves to this challenging problem and propose a novel adversarial distillation mechanism to craft a compact student model without any real-world data. We introduce a model discrepancy to quantificationally measure the difference between student and teacher models and construct an optimizable upper bound. In our work, the student and the teacher jointly act the role of the discriminator to reduce this discrepancy, when a generator adversarially produces some hard samples to enlarge it. Extensive experiments demonstrate that the proposed data-free method yields comparable performance to existing data-driven methods. More strikingly, our approach can be directly extended to semantic segmentation, which is more complicated than classification, and our approach achieves state-of-the-art results. Code and pretrained models are available at https://github.com/VainF/Data-Free-Adversarial-Distillation.
Knowledge distillation (KD) has enabled remarkable progress in model compression and knowledge transfer. However, KD requires a large volume of original data or their representation statistics that are not usually available in practice. Data-free KD has recently been proposed to resolve this problem, wherein teacher and student models are fed by a synthetic sample generator trained from the teacher. Nonetheless, existing data-free KD methods rely on fine-tuning of weights to balance multiple losses, and ignore the diversity of generated samples, resulting in limited accuracy and robustness. To overcome this challenge, we propose robustness and diversity seeking data-free KD (RDSKD) in this paper. The generator loss function is crafted to produce samples with high authenticity, class diversity, and inter-sample diversity. Without real data, the objectives of seeking high sample authenticity and class diversity often conflict with each other, causing frequent loss fluctuations. We mitigate this by exponentially penalizing loss increments. With MNIST, CIFAR-10, and SVHN datasets, our experiments show that RDSKD achieves higher accuracy with more robustness over different hyperparameter settings, compared to other data-free KD methods such as DAFL, MSKD, ZSKD, and DeepInversion.
Model inversion, whose goal is to recover training data from a pre-trained model, has been recently proved feasible. However, existing inversion methods usually suffer from the mode collapse problem, where the synthesized instances are highly similar to each other and thus show limited effectiveness for downstream tasks, such as knowledge distillation. In this paper, we propose Contrastive Model Inversion~(CMI), where the data diversity is explicitly modeled as an optimizable objective, to alleviate the mode collapse issue. Our main observation is that, under the constraint of the same amount of data, higher data diversity usually indicates stronger instance discrimination. To this end, we introduce in CMI a contrastive learning objective that encourages the synthesizing instances to be distinguishable from the already synthesized ones in previous batches. Experiments of pre-trained models on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that CMI not only generates more visually plausible instances than the state of the arts, but also achieves significantly superior performance when the generated data are used for knowledge distillation. Code is available at url{https://github.com/zju-vipa/DataFree}.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Knowledge distillation is an effective technique that transfers knowledge from a large teacher model to a shallow student. However, just like massive classification, large scale knowledge distillation also imposes heavy computational costs on training models of deep neural networks, as the softmax activations at the last layer involve computing probabilities over numerous classes. In this work, we apply the idea of importance sampling which is often used in Neural Machine Translation on large scale knowledge distillation. We present a method called dynamic importance sampling, where ranked classes are sampled from a dynamic distribution derived from the interaction between the teacher and student in full distillation. We highlight the utility of our proposal prior which helps the student capture the main information in the loss function. Our approach manages to reduce the computational cost at training time while maintaining the competitive performance on CIFAR-100 and Market-1501 person re-identification datasets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا