Do you want to publish a course? Click here

Rotational dynamics of bottom-heavy rods in turbulence from experiments and numerical simulations

65   0   0.0 ( 0 )
 Added by Enrico Calzavarini
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We successfully perform the three-dimensional tracking in a turbulent fluid flow of small asymmetrical particles that are neutrally-buoyant and bottom-heavy, i.e., they have a non-homogeneous mass distribution along their symmetry axis. We experimentally show how a tiny mass inhomogeneity can affect the particle orientation along the preferred vertical direction and modify its tumbling rate. The experiment is complemented by a series of simulations based on realistic Navier-Stokes turbulence and on a point-like particle model that is capable to explore the full range of parameter space characterized by the gravitational torque stability number and by the particle aspect ratio. We propose a theoretical perturbative prediction valid in the high bottom-heaviness regime that agrees well with the observed preferential orientation and tumbling rate of the particles. We also show that the heavy-tail shape of the probability distribution function of the tumbling rate is weakly affected by the bottom-heaviness of the particles.



rate research

Read More

We analyze time series stemming from experiments and direct numerical simulations of hydrodynamic and magnetohydrodynamic turbulence. Simulations are done in periodic boxes, but with a volumetric forcing chosen to mimic the geometry of the flow in the experiments, the von Karman swirling flow between two counter-rotating impellers. Parameters in the simulations are chosen to (within computational limitations) allow comparisons between the experiments and the numerical results. Conducting fluids are considered in all cases. Two different configurations are considered: a case with a weak externally imposed magnetic field, and a case with self-sustained magnetic fields. Evidence of long-term memory and $1/f$ noise is observed in experiments and simulations, in the case with weak magnetic field associated with the hydrodynamic behavior of the shear layer in the von Karman flow, and in the dynamo case associated with slow magnetohydrodynamic behavior of the large scale magnetic field.
Flapping insects are remarkably agile fliers, adapted to a highly turbulent environment. We present a series of high resolution numerical simulations of a bumblebee interacting with turbulent inflow. We consider both tethered and free flight, the latter with all six degrees of freedom coupled to the Navier--Stokes equations. To this end we vary the characteristics of the turbulent inflow, either changing the turbulence intensity or the spectral distribution of turbulent kinetic energy. Active control is excluded in order to quantify the passive response real animals exhibit during their reaction time delay, before the wing beat can be adapted. Modifying the turbulence intensity shows no significant impact on the cycle-averaged aerodynamical forces, moments and power, compared to laminar inflow conditions. The fluctuations of aerodynamic observables, however, significantly grow with increasing turbulence intensity. Changing the integral scale of turbulent perturbations, while keeping the turbulence intensity fixed, shows that the fluctuation level of forces and moments is significantly reduced if the integral scale is smaller than the wing length. Our study shows that the scale-dependent energy distribution in the surrounding turbulent flow is a relevant factor conditioning how flying insects control their body orientation.
In this paper we derive a pore-scale model for permeable biofilm formation in a two-dimensional pore. The pore is divided in two phases: water and biofilm. The biofilm is assumed to consist of four components: water, extracellular polymeric substances (EPS), active bacteria, and dead bacteria. The flow of water is modeled by the Stokes equation whereas a diffusion-convection equation is involved for the transport of nutrients. At the water/biofilm interface, nutrient transport and shear forces due to the water flux are considered. In the biofilm, the Brinkman equation for the water flow, transport of nutrients due to diffusion and convection, displacement of the biofilm components due to reproduction/dead of bacteria, and production of EPS are considered. A segregated finite element algorithm is used to solve the mathematical equations. Numerical simulations are performed based on experimentally determined parameters. The stress coefficient is fitted to the experimental data. To identify the critical model parameters, a sensitivity analysis is performed. The Sobol sensitivity indices of the input parameters are computed based on uniform perturbation by $pm 10 %$ of the nominal parameter values. The sensitivity analysis confirms that the variability or uncertainty in none of the parameters should be neglected.
We compare experimental data and numerical simulations for the dynamics of inertial particles with finite density in turbulence. In the experiment, bubbles and solid particles are optically tracked in a turbulent flow of water using an Extended Laser Doppler Velocimetry technique. The probability density functions (PDF) of particle accelerations and their auto-correlation in time are computed. Numerical results are obtained from a direct numerical simulation in which a suspension of passive pointwise particles is tracked, with the same finite density and the same response time as in the experiment. We observe a good agreement for both the variance of acceleration and the autocorrelation timescale of the dynamics; small discrepancies on the shape of the acceleration PDF are observed. We discuss the effects induced by the finite size of the particles, not taken into account in the present numerical simulations.
Progress in roughness research, mapping any given roughness geometry to its fluid dynamic behaviour, has been hampered by the lack of accurate and direct measurements of skin-friction drag, especially in open systems. The Taylor--Couette (TC) system has the benefit of being a closed system, but its potential for characterizing irregular, realistic, 3-D roughness has not been previously considered in depth. Here, we present direct numerical simulations (DNSs) of TC turbulence with sand grain roughness mounted on the inner cylinder. The model proposed by Scotti (textit{Phys. Fluids}, vol. 18, 031701, 2006) has been improved to simulate a random rough surface of monodisperse sand grains, which is characterized by the equivalent sand grain height $k_s$. Taylor numbers range from $Ta = 1.0times 10^7$(corresponding to $Re_tau = 82$) to $Ta = 1.0times 10^9$($Re_tau = 635$). We focus on the influence of the roughness height $k_s^+$ in the transitionally rough regime, through simulations of TC with rough surfaces, ranging from $k_s^+=5$ up to $k_s^+ = 92$, where the superscript `$+$ indicates non-dimensionalization in viscous units. We find that the downwards shift of the logarithmic layer, due to transitionally rough sand grains exhibits remarkably similar behavior to that of the Nikuradse (textit{VDI-Forschungsheft} 361, 1933) data of sand grain roughness in pipe flow, regardless of the Taylor number dependent constants of the logarithmic layer.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا