Do you want to publish a course? Click here

Detection of graphenes divergent orbital diamagnetism at the Dirac point

63   0   0.0 ( 0 )
 Added by Helene Bouchiat
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The electronic properties of graphene have been intensively investigated over the last decade, and signatures of the remarkable features of its linear Dirac spectrum have been displayed using transport and spectroscopy experiments. In contrast, the orbital magnetism of graphene, which is one of the most fundamental signature of the characteristic Berry phase of graphenes electronic wave functions, has not yet been measured in a single flake. In particular, the striking prediction of a divergent diamagnetic response at zero doping calls for an experimental test. Using a highly sensitive Giant Magnetoresistance sensor (GMR) we have measured the gate voltage-dependent magnetization of a single graphene monolayer encapsulated between boron nitride crystals. The signal exhibits a diamagnetic peak at the Dirac point whose magnetic field and temperature dependences agree with theoretical predictions starting from the work of Mc Clure cite{McClure1956}. Our measurements open a new field of investigation of orbital currents in graphene and 2D topological materials, offering a new means to monitor Berry phase singularities and explore correlated states generated by combined effects of Coulomb interactions, strain or moire potentials.



rate research

Read More

We have investigated the behavior of the resistance of graphene at the $n=0$ Landau Level in an intense magnetic field $H$. Employing a low-dissipation technique (with power $P<$3 fW), we find that, at low temperature $T$, the resistance at the Dirac point $R_0(H)$ undergoes a 1000-fold increase from $sim$10 k$Omega$ to 40 M$Omega$ within a narrow interval of field. The abruptness of the increase suggests that a transition to an insulating, ordered state occurs at the critical field $H_c$. Results from 5 samples show that $H_c$ depends systematically on the disorder, as measured by the offset gate voltage $V_0$. Samples with small $V_0$ display a smaller critical field $H_c$. Empirically, the steep increase in $R_0$ fits acccurately a Kosterlitz-Thouless-type correlation length over 3 decades. The curves of $R_0$ vs. $T$ at fixed $H$ approach the thermal-activation form with a gap $Deltasim$15 K as $Hto H_c^{-}$, consistent with a field-induced insulating state.
Recent experiments reveal a significant increase in the graphene Fermi velocity close to charge neutrality. This has widely been interpreted as a confirmation of the logarithmic divergence of the graphene Fermi velocity predicted by a perturbative approach. In this work, we reconsider this problem using functional bosonization techniques calculating the effects of electron interactions on the density of states non-perturbatively. We find that the renormalized velocity is {it finite} and independent of the high energy cut-off, and we argue that the experimental observations are better understood in terms of an anomalous dimension. Our results also represent a bosonized solution for interacting Weyl fermions in (2+1) dimensions at half-filing.
Spin-Hall conductivity (SHC) of fully relativistic (4x4 matrix) Dirac electrons is studied based on the Kubo formula aiming at possible application to bismuth and bismuth-antimony alloys. It is found that there are two distinct contributions to SHC, one only from the states near the Fermi energy and the other from all the occupied states. The latter remains even in the insulating state, i.e., when the chemical potential lies in the band-gap, and turns to have the same dependences on the chemical potential as the orbital susceptibility (diamagnetism), a surprising fact. These results are applied to bismuth-antimony alloys and the doping dependence of the SHC is proposed.
Bismuth crystal is known for its remarkable properties resulting from particular electronic states, e. g., the Shubnikov-de Haas effect and the de Haas-van Alphen effect. Above all, the large diamagnetism of bismuth had been a long-standing puzzle soon after the establishment of quantum mechanics, which had been resolved eventually in 1970 based on the effective Hamiltonian derived by Wolff as due to the interband effects of a magnetic field in the presence of a large spin-orbit interaction. This Hamiltonian is essentially the same as the Dirac Hamiltonian, but with spatial anisotropy and an effective velocity much smaller than the light velocity. This paper reviews recent progress in the theoretical understanding of transport and optical properties, such as the weak-field Hall effect together with the spin Hall effect, and ac conductivity, of a system described by the Wolff Hamiltonian and its isotropic version with a special interest of exploring possible relationship with orbital magnetism. It is shown that there exist a fundamental relationship between spin Hall conductivity and orbital susceptibility in the insulating state on one hand, and the possibility of fully spin-polarized electric current in magneto-optics. Experimental tests of these interesting features have been proposed.
Spin-Hall conductivity $sigma_{{rm s}xy}$ and orbital susceptibility $chi$ are investigated for the anisotropic Wolff Hamiltonian, which is an effective Hamiltonian common to Dirac electrons in solids. It is found that, both for $sigma_{{rm s}xy}$ and $chi$, the effect of anisotropy appears only in the prefactors, which is given as the Gaussian curvature of the energy dispersion, and their functional forms are equivalent to those of the isotropic Wolff Hamiltonian. As a result, it is revealed that the relationship between the spin Hall conductivity and the orbital susceptibility in the insulating state, $sigma_{{rm s}xy}=(3mc^2/hbar e)chi$, which was firstly derived for the isotropic Wolff Hamiltonian, is also valid for the anisotropic Wolff Hamiltonian. Based on this theoretical finding, the magnitude of spin-Hall conductivity is estimated for bismuth and its alloys with antimony by that of orbital susceptibility, which has good correspondence between theory and experiments. The magnitude of spin-Hall conductivity turns out to be as large as $esigma_{{rm s}xy} sim 10^4 {Omega}^{-1}{rm cm}^{-1}$, which is about 100 times larger than that of Pt.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا