No Arabic abstract
We propose simple scoto-seesaw models to account for dark matter and neutrino masses with spontaneous CP violation. This is achieved with a single horizontal $mathcal{Z}_8$ discrete symmetry, broken to a residual $mathcal{Z}_2$ subgroup responsible for stabilizing dark matter. CP is broken spontaneously via the complex vacuum expectation value of a scalar singlet, inducing leptonic CP-violating effects. We find that the imposed $mathcal{Z}_8$ symmetry pushes the values of the Dirac CP phase and the lightest neutrino mass to ranges already probed by ongoing experiments, so that normal-ordered neutrino masses can be cornered by cosmological observations and neutrinoless double beta decay experiments.
We study the minimal seesaw model, where two right-handed Majorana neutrinos are introduced, focusing on the CP violating phase. In addition, we take the trimaximal mixing pattern for the neutrino flavor where the charged lepton mass matrix is diagonal. Thanks to this symmetric framework, the $3times 2$ Dirac neutrino mass matrix is given in terms of a few parameters. Numerical studies reveal that the observation of the CP violating phase can determine the flavor structure of the Dirac neutrino mass matrix in the minimal seesaw model. In particular, new minimal Dirac neutrino mass matrices are proposed in the case of $rm TM_1$, which is derived by the additional 2-3 family mixing to the tri-bimaximal mixing basis in the normal hierarchy of neutrino masses. Our analyses include the Littlest seesaw model by King {it et al.}, which is one of the specific one in our results. Furthermore, it is remarked that our $3times 2$ Dirac neutrino mass matrix is reproduced by introducing gauge singlet flavons with the specific alignments of the VEVs. These alignments suggest the residual symmetry of $S_4$ group.
We explore realizations of minimal flavor violation (MFV) for leptons in the simplest seesaw models where the neutrino mass generation mechanism is driven by new fermion singlets (type I) or triplets (type III) and by a scalar triplet (type II). We also discuss similarities and differences of the MFV implementation among the three scenarios. To study the phenomenological implications, we consider a number of effective dimension-six operators that are purely leptonic or couple leptons to the standard-model gauge and Higgs bosons and evaluate constraints on the scale of MFV associated with these operators from the latest experimental information. Specifically, we employ the most recent measurements of neutrino mixing parameters as well as the currently available data on flavor-violating radiative and three-body decays of charged leptons, mu -> e conversion in nuclei, the anomalous magnetic moments of charged leptons, and their electric dipole moments. The most stringent lower-limit on the MFV scale comes from the present experimental bound on mu -> e gamma and can reach 500 TeV or higher, depending on the details of the seesaw scheme. With our numerical results, we illustrate some important differences among the seesaw types. In particular, we show that in types I and III there are features which can bring about potentially remarkable effects which do not occur in type II. In addition, we comment on how one of the new effective operators can induce flavor-changing dilepton decays of the Higgs boson, which may be probed in upcoming searches at the LHC.
We discuss the minimal seesaw model for the Dirac CP violating phase of the lepton mixing matrix. We introduce two right-handed Majorana neutrinos and obtain several textures of the tri-maximal lepton mixing matrices. Moreover, we discuss the observed baryon asymmetry of the universe through the leptogenesis mechanism. As the result, we obtain the specific model which predicts the negative sign of maximal Dirac CP violating phase and normal hierarchy of neutrino masses.
We discuss the correlation between the CP violating Dirac phase of the lepton mixing matrix and the cosmological baryon asymmetry based on the leptogenesis in the minimal seesaw model with two right-handed Majorana neutrinos and the trimaximal mixing for neutrino flavors. The sign of the CP violating Dirac phase at low energy is fixed by the observed cosmological baryon asymmetry since there is only one phase parameter in the model. According to the recent T2K and NO$ u$A data of the CP violation, the Dirac neutrino mass matrix of our model is fixed only for the normal hierarchy of neutrino masses.
Decades of precision measurements have firmly established the Kobayashi-Maskawa phase as the dominant source of the CP violation observed in weak quark decays. However, it is still unclear whether CP violation is explicitly encoded in complex Yukawa matrices or instead stems from spontaneous symmetry breaking with underlying CP-conserving Yukawa and Higgs sectors. Here we study the latter possibility for the case of a generic two-Higgs-doublet model. We find that theoretical constraints limit the ratio $t_beta$ of the vacuum expectation values to the range $0.22 leq t_beta leq 4.5$ and imply the upper bounds $M_{H^pm}leq 435$ GeV, $M_{H_{2}^0} leq 485$ GeV and $M_{H_{3}^0} leq 545$ GeV for the charged and extra neutral Higgs masses. We derive lower bounds on charged-Higgs couplings to bottom quarks which provide a strong motivation to study the non-standard production and decay signatures $p p to qb H^pm(to q^prime b)$ with all flavors $q,q^prime=u,c,t$ in the search for the charged Higgs boson. We further present a few benchmark scenarios with interesting discovery potential in collider analyses.