Do you want to publish a course? Click here

Real-time triggering capabilities for Fast Radio Bursts at the MeerKAT telescope

392   0   0.0 ( 0 )
 Added by Fabian Jankowski
 Publication date 2020
  fields Physics
and research's language is English
 Authors F. Jankowski




Ask ChatGPT about the research

Fast Radio Bursts (FRBs) are bright enigmatic radio pulses of roughly millisecond duration that come from extragalactic distances. As part of the MeerTRAP project, we use the MeerKAT telescope array in South Africa to search for and localise those bursts to high precision in real-time. We aim to pinpoint FRBs to their host galaxies and, thereby, to understand how they are created. However, the transient nature of FRBs presents various challenges, e.g. in system design, raw compute power and real-time communication, where the real-time requirements are reasonably strict (a few tens of seconds). Rapid data processing is essential for us to be able to retain high-resolution data of the bursts, to localise them, and to minimise the delay for follow-up observations. We give a short overview of the data analysis pipeline, describe the challenges faced, and elaborate on our initial design and implementation of a real-time triggering infrastructure for FRBs at the MeerKAT telescope.



rate research

Read More

The aim of this white paper is to discuss the observing strategies for the LSST Wide-Fast-Deep that would improve the study of blazars (emission variability, census, environment) and Fast Radio Bursts (FRBs). For blazars, these include the adoption of: i) a reference filter to allow reconstruction of a well-sampled light curve not affected by colour changes effects; ii) two snapshots/visit with different exposure times to avoid saturation during flaring states; iii) a rolling cadence to get better-sampled light curves at least in some time intervals. We also address the potential importance of Target of Opportunity (ToO) observations of blazar neutrino sources, and the advantages of a Minisurvey with a star trail cadence (see white paper by David Thomas et al.) for both the blazar science and the detection of possible very fast optical counterparts of FRBs.
Polarimetric observations of Fast Radio Bursts (FRBs) are a powerful resource for better understanding these mysterious sources by directly probing the emission mechanism of the source and the magneto-ionic properties of its environment. We present a pipeline for analysing the polarized signal of FRBs captured by the triggered baseband recording system operating on the FRB survey of The Canadian Hydrogen Intensity Mapping Experiment (CHIME/FRB). Using a combination of simulated and real FRB events, we summarize the main features of the pipeline and highlight the dominant systematics affecting the polarized signal. We compare parametric (QU-fitting) and non-parametric (rotation measure synthesis) methods for determining the Faraday rotation measure (RM) and find the latter method susceptible to systematic errors from known instrumental effects of CHIME/FRB observations. These errors include a leakage artefact that appears as polarized signal near $rm{RMsim 0 ; rad , m^{-2}}$ and an RM sign ambiguity introduced by path length differences in the systems electronics. We apply the pipeline to a bright burst previously reported by citet[FRB 20191219F;][]{Leung2021}, detecting an $mathrm{RM}$ of $rm{+6.074 pm 0.006 pm 0.050 ; rad , m^{-2}}$ with a significant linear polarized fraction ($gtrsim0.87$) and strong evidence for a non-negligible circularly polarized component. Finally, we introduce an RM search method that employs a phase-coherent de-rotation algorithm to correct for intra-channel depolarization in data that retain electric field phase information, and successfully apply it to an unpublished FRB, FRB 20200917A, measuring an $mathrm{RM}$ of $rm{-1294.47 pm 0.10 pm 0.05 ; rad , m^{-2}}$ (the second largest unambiguous RM detection from any FRB source observed to date).
Glitches are the observational manifestations of superfluidity inside neutron stars. The aim of this paper is to describe an automated glitch detection pipeline, which can alert the observers on possible real-time detection of rotational glitches in pulsars. Post alert, the pulsars can be monitored at a higher cadence to measure the post-glitch recovery phase. Two algorithms namely, Median Absolute Deviation (MAD) and polynomial regression have been explored to detect glitches in real time. The pipeline has been optimized with the help of simulated timing residuals for both the algorithms. Based on the simulations, we conclude that the polynomial regression algorithm is significantly more effective for real time glitch detection. The pipeline has been tested on a few published glitches. This pipeline is presently implemented at the Ooty Radio Telescope. In the era of upcoming large telescopes like SKA, several hundreds of pulsars will be observed regularly and such a tool will be useful for both real-time detection as well as optimal utilization of observation time for such glitching pulsars.
Fast radio bursts are a new class of transient radio phenomena currently detected as millisecond radio pulses with very high dispersion measures. As new radio surveys begin searching for FRBs a large population is expected to be detected in real-time, triggering a range of multi-wavelength and multi-messenger telescopes to search for repeating bursts and/or associated emission. Here we propose a method for disseminating FRB triggers using Virtual Observatory Events (VOEvents). This format was developed and is used successfully for transient alerts across the electromagnetic spectrum and for multi-messenger signals such as gravitational waves. In this paper we outline a proposed VOEvent standard for FRBs that includes the essential parameters of the event and where these parameters should be specified within the structure of the event. An additional advantage to the use of VOEvents for FRBs is that the events can automatically be ingested into the FRB Catalogue (FRBCAT) enabling real-time updates for public use. We welcome feedback from the community on the proposed standard outlined below and encourage those interested to join the nascent working group forming around this topic.
66 - W. Farah , C. Flynn , M. Bailes 2019
We detail a new fast radio burst (FRB) survey with the Molonglo Radio Telescope, in which six FRBs were detected between June 2017 and December 2018. By using a real-time FRB detection system, we captured raw voltages for five of the six events, which allowed for coherent dedispersion and very high time resolution (10.24 $mu$s) studies of the bursts. Five of the FRBs show temporal broadening consistent with interstellar and/or intergalactic scattering, with scattering timescales ranging from 0.16 to 29.1 ms. One burst, FRB181017, shows remarkable temporal structure, with 3 peaks each separated by 1 ms. We searched for phase-coherence between the leading and trailing peaks and found none, ruling out lensing scenarios. Based on this survey, we calculate an all-sky rate at 843 MHz of $98^{+59}_{-39}$ events sky$^{-1}$ day$^{-1}$ to a fluence limit of 8 Jy-ms: a factor of 7 below the rates estimated from the Parkes and ASKAP telescopes at 1.4 GHz assuming the ASKAP-derived spectral index $alpha=-1.6$ ($F_{ u}propto u^{alpha}$). Our results suggest that FRB spectra may turn over below 1 GHz. Optical, radio and X-ray followup has been made for most of the reported bursts, with no associated transients found. No repeat bursts were found in the survey.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا