Do you want to publish a course? Click here

Role of exact treatment of thermal pairing in radiative strength functions of $^{161-163}$Dy nuclei

76   0   0.0 ( 0 )
 Added by Nguyen Quang Hung
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The enhancement of radiative strength function (RSF) in the region of low $gamma$-rays energy ($E_{gamma}leq 12$ MeV), which is caused by the pygmy dipole resonance (PDR), is treated within the phonon damping model (PDM) plus exact thermal pairing (EP) without adding any extra PDR strength function. The numerical calculations performed for $^{161-163}$Dy show that, because of the effect of EP, the EP+PDM can describe reasonably well the total RSF data in both low- and high-energy regions of $gamma$-rays. Consequently, as compared to the conventional description within the phenomenological generalized Lorentzian (GLO) and standard Lorentzian (SLO) models, the EP+PDM calculations can eliminate at least eight free parameters. This indicates the important role of microscopic approaches towards the precise description of the RSF. In particular, temperature is found to have significant contributions to the RSF below the neutron separation energy, questioning again the validity of the Brink-Axel hypothesis in this energy region.



rate research

Read More

The pairing correlations in hot nuclei $^{162}$Dy are investigated in terms of the thermodynamical properties by covariant density functional theory. The heat capacities $C_V$ are evaluated in the canonical ensemble theory and the paring correlations are treated by a shell-model-like approach, in which the particle number is conserved exactly. A S-shaped heat capacity curve, which agrees qualitatively with the experimental data, has been obtained and analyzed in details. It is found that the one-pair-broken states play crucial roles in the appearance of the S shape of the heat capacity curve. Moreover, due to the effect of the particle-number conservation, the pairing gap varies smoothly with the temperature, which indicates a gradual transition from the superfluid to the normal state.
135 - K. Uzawa , K. Hagino , 2021
It is known that nuclear deformation plays an important role in inducing the halo structure in neutron-rich nuclei by mixing several angular momentum components. While previous theoretical studies on this problem in the literature assume axially symmetric deformation, we here consider non-axially symmetric deformations. With triaxial deformation, the $Omega$ quantum number is admixed in a single-particle wave function, where $Omega$ is the projection of the single-particle angular momentum on the symmetric axis, and the halo structure may arise even when it is absent with the axially symmetric deformation. In this way, the area of halo nuclei may be extended when triaxial deformation is considered. We demonstrate this idea using a deformed Woods-Saxon potential for nuclei with neutron number N=13 and 43.
The semiclassical method for description of the radiative strength function is used for asymmetric nuclei with $N e Z$. The theory is based on the linearized Vlasov-Landau equations in two-component finite Fermi liquid. The dependence of the shape $E1$ strength on the coupling constant between proton and neutron subsystems was studied.
The closed-form expressions for the photon strength functions (PSF) are tested using the gamma-decay data of OSLO group. The theoretical calculations are performed for the Lorentzian models of PSF for electric and magnetic dipole gamma-rays. The criteria of minimum of least-square value as well as the root-mean-square deviation factor are used. It is shown that a rather good agreement is obtained within the Simple Modified Lorentzian model for E1 PSF modelling.
Experimental nuclear level densities at excitation energies below the neutron threshold follow closely a constant-temperature shape. This dependence is unexpected and poorly understood. In this work, a fundamental explanation of the observed constant-temperature behavior in atomic nuclei is presented for the first time. It is shown that the experimental data portray a first-order phase transition from a superfluid to an ideal gas of non-interacting quasiparticles. Even-even, odd-$A$, and odd-odd level densities show in detail the behavior of gap- and gapless superconductors also observed in solid-state physics. These results and analysis should find a direct application to mesoscopic systems such as superconducting clusters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا