Do you want to publish a course? Click here

Microscopic origin of the competition between charge density waves and enhanced superconductivity in Ba(Ni,Co)$_2$(As,P)$_2$

73   0   0.0 ( 0 )
 Added by Michael Merz
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nematic phase transitions in high-temperature superconductors have a strong impact on the electronic properties of these systems. BaFe$_2$As$_2$,@ with an established nematic transition around 137 K induced by magnetic fluctuations, and BaNi$_2$As$_2$,@ a non-magnetic analog of BaFe$_2$As$_2$ with a structural transition in the same temperature range,@ share a common tetragonal aristotype crystal structure with space-group type $I4/mmm$.@ In contrast to BaFe$_2$As$_2$ where collinear stripe magnetic order is found for the low-$T$ phase, a unidirectional charge density wave is observed for the low-$T$ phase of BaNi$_2$As$_2$.@ Here we show that between the high- and low-$T$ phases of Ba(Ni,Co)$_2$(As,P)$_2$ an additional phase with broken fourfold symmetry and $d_{xz}$ orbital order exists which is a promising candidate for charge-fluctuation-induced nematicity. Moreover, we find evidence that suppression of the (distorted) zig-zag chains by reducing the contribution of the $d_{xy}$ orbitals leads to an enhanced $T_{rm c}$.@



rate research

Read More

From systematic analysis of the high pulsed magnetic field resistance data of La$_{2-x}$Sr$_x$CuO$_{4}$ thin films, we extract an experimental phase diagram for several doping values ranging from the very underdoped to the very overdoped regimes. Our analysis highlights a competition between charge density waves and superconductivity which is ubiquitous between $x=0.08$ and $x=0.19$ and produces the previously observed double step transition. When suppressed by a strong magnetic field, superconductivity is resilient for two specific doping ranges centered around respectively $xapprox 0.09$ and $xapprox 0.19$ and the characteristic temperature for the onset of the competing charge density wave phase is found to vanish above $x = 0.19$. At $x=1/8$ the two phases are found to coexist exactly at zero magnetic field.
The charge density wave in the high-temperature superconductor YBa$_2$Cu$_3$O$_{7-x}$ (YBCO) is now known to have two different ordering tendencies differentiated by their $c$-axis correlations. These correspond to ferro- (F-CDW) and antiferro- (AF-CDW) couplings between CDW in neighbouring CuO$_2$ bilayers. This discovery has prompted a number of fundamental questions. For example, how does superconductivity adjust to two competing orders and are either of these orders responsible for the electronic reconstruction? Here we use high-energy x-ray diffraction to study YBa$_2$Cu$_3$O$_{6.67}$ as a function of magnetic field and temperature. We show that regions of the sample with F-CDW correlations suppress superconductivity more strongly than those with AF-CDW correlations. This implies that an inhomogeneous superconducting state exists, in which some regions show a weak or fragile form of superconductivity. By comparison of F-CDW and AF-CDW correlation lengths, it is furthermore concluded that F-CDW ordering is sufficiently long-range to modify the electronic structure. Our study thus suggests that F-CDW correlations have an important impact on superconducting and normal state properties of underdoped YBCO.
Using electronic Raman spectroscopy, we report direct measurements of charge nematic fluctuations in the tetragonal phase of strain-free Ba(Fe$_{1-x}$Co$_{x})_{2}$As$_{2}$ single crystals. The strong enhancement of the Raman response at low temperatures unveils an underlying charge nematic state that extends to superconducting compositions and which has hitherto remained unnoticed. Comparison between the extracted charge nematic susceptibility and the elastic modulus allows us to disentangle the charge contribution to the nematic instability, and to show that charge nematic fluctuations are weakly coupled to the lattice.
184 - L. J. Li , Q. B. Wang , Y. K. Luo 2008
A series of 122 phase BaFe$_{2-x}$Ni$_x$As$_2$ ($x$ = 0, 0.055, 0.096, 0.18, 0.23) single crystals were grown by self flux method and a dome-like Ni doping dependence of superconducting transition temperature is discovered. The transition temperature $T_c^{on}$ reaches a maximum of 20.5 K at $x$ = 0.096, and it drops to below 4 K as $x$ $geq$ 0.23. The negative thermopower in the normal state indicates that electron-like charge carrier indeed dominates in this system. This Ni-doped system provides another example of superconductivity induced by electron doping in the 122 phase.
We carried out a comprehensive study of the electronic, magnetic, and thermodynamic properties of Ni-doped ZrTe$_2$. High quality Ni$_{0.04}$ZrTe$_{1.89}$ single crystals show a possible coexistence of charge density waves (CDW, T$_{CDW}approx287$,K) with superconductivity (T$_capprox 4.1$,K), which we report here for the first time. The temperature dependence of the lower (H$_{c_1}$) and upper (H$_{c_2}$) critical magnetic fields both deviate significantly from the behaviors expected in conventional single-gap s-wave superconductors. However, the behaviors of the normalized superfluid density $rho_s(T)$ and H$_{c_2}(T)$ can be described well using a two-gap model for the Fermi surface, in a manner consistent with conventional multiband superconductivity. Electrical resistivity and specific heat measurements show clear anomalies centered near 287,K suggestive of CDW phase transition. Additionally, electronic-structure calculations support the coexistence of electron-phonon multiband superconductivity and CDW order due to the compensated disconnected nature of the electron- and hole-pockets at the Fermi surface. Our calculations also suggest that ZrTe$_2$ is a non-trivial topological type-II Dirac semimetal. These findings highlight that Ni-doped ZrTe2 is uniquely important for probing the coexistence of superconducting and CDW ground states in an electronic system with non-trivial topology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا