Photon quantum entanglement in the MeV regime and its application in PET imaging


Abstract in English

Positron Emission Tomography (PET) is a widely-used imaging modality for medical research and clinical diagnosis. Here we demonstrate, through detailed experiments and simulations, an exploration of the benefits of exploiting the quantum entanglement of linear polarisation between the two positron annihilation photons utilised in PET. A new simulation, which includes the predicted influence of quantum entanglement on the interaction of MeV-scale photons with matter, is validated by comparison with experimental data from a cadmium zinc telluride (CZT) PET demonstrator apparatus. In addition, a modified setup enabled the first experimental constraint on entanglement loss for photons in the MeV regime. Quantum-entangled PET offers new methodologies to address key challenges in next generation imaging. As an indication of the potential benefits, we present a simple method to quantify and remove in-patient scatter and random backgrounds using only the quantum entanglement information in the PET events.

Download