Do you want to publish a course? Click here

Nanomechanical characterisation of a water-repelling terpolymer coating of cellulosic fibres

48   0   0.0 ( 0 )
 Added by Julia Auernhammer
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Polymer coatings on cellulosic fibres are widely used to enhance the natural fibre properties by improving, for example, the hydrophobicity and wet strength. Here, we investigate the effects of a terpolymer P(S-co-MABP-co-PyMA) coating on cotton linters and eucalyptus fibres to improve the resistance of cellulose fibres against wetness. Coated and uncoated fibres were characterised by using scanning electron microscopy, contact angle measurements, Raman spectroscopy and atomic force microscopy with the objective of correlating macroscopic properties such as the hydrophobicity of the fleece with microscopic properties such as the coating distribution and local nanomechanics. The scanning electron and fluorescence microscopy results revealed the distribution of the coating on the paper fleeces and fibres. Contact angle measurements proved the hydrophobic character of the coated fleece, which was also confirmed by Raman spectroscopy measurements that investigated the water uptake in single fibres. The water uptake also induced a change in the local mechanical properties, as measured by atomic force microscopy. These results verify the basic functionality of the hydrophobic coating on fibres and paper fleeces but call into question the homogeneity of the coating.

rate research

Read More

The mechanical properties of single fibres are highly important in the paper production process to produce and adjust properties for the favoured fields of application. The description of mechanical properties is usually characterised via linearized assumptions and is not resolved locally or spatially in three dimensions. In tensile tests or nanoindentation experiments on cellulosic fibres, only one mechanical parameter, such as elastic modulus or hardness, is usually obtained. To obtain a more detailed mechanical picture of the fibre, it is crucial to determine mechanical properties in depth. To this end, we discuss an atomic force microscopy-based approach to examine the local stiffness as a function of indentation depth via static force-distance curves. This method has been applied to linter fibres (extracted from a finished paper sheet) as well as to natural raw cotton fibres to better understand the influence of the pulp treatment process in paper production on the mechanical properties. Both types of fibres were characterised in dry and wet conditions with respect to alterations in their mechanical properties. Subsurface imaging revealed which wall in the fibre structure protects the fibre against mechanical loading. Via a combined 3D display, a spatially resolved mechanical map of the fibre interior near the surface can be established. Additionally, we labelled fibres with carbohydrate binding modules tagged with fluorescent proteins to compare the AFM results with fluorescence confocal laser scanning microscopy imaging. Nanomechanical subsurface imaging is thus a tool to better understand the mechanical behaviour of cellulosic fibres, which have a complex, hierarchical structure.
Although a hydrophobic microtexture at a solid surface most often reflects rain owing to the presence of entrapped air within the texture, it is much more challenging to repel hot water. As it contacts a colder material, hot water generates condensation within the cavities at the solid surface, which eventually builds bridges between the substrate and the water, and thus destroys repellency. Here we show that both small (~100 nm) and large (~10 mu m) model features do reflect hot drops at any drop temperature and in the whole range of explored impact velocities. Hence, we can define two structural recipes for repelling hot water: drops on nanometric features hardly stick owing to the miniaturization of water bridges, whereas kinetics of condensation in large features is too slow to connect the liquid to the solid at impact.
We describe the construction and characterisation of a nano-oscillator formed by a Paul trap. The frequency and temperature stability of the nano-oscillator was measured over several days allowing us to identify the major sources of trap and environmental fluctuations. We measure an overall frequency stability of 2 ppm/hr and a temperature stability of more than 5 hours via the Allan deviation. Importantly, we find that the charge on the nanoscillator is stable over a timescale of at least two weeks and that the mass of the oscillator, can be measured with a 3 % uncertainty. This allows us to distinguish between the trapping of a single nanosphere and a nano-dumbbell formed by a cluster of two nanospheres.
Motivated by recent discoveries of flow-like effects in pp collisions, and noting that multiple string systems can form and hadronize simultaneously in such collisions, we develop a simple model for the repulsive interaction between two Lund strings with a positive (colour-oriented) overlap in rapidity. The model is formulated in momentum space and is based on a postulate of a constant net transverse momentum being acquired per unit of overlap along a common rapidity direction. To conserve energy, the strings shrink in the longitudinal direction, essentially converting a portion of the string invariant mass $m^2$ into $p_{perp}^2$ for constant $m_{perp}^2 = m^2 + p_{perp}^2$ for each string. The reduction in string invariant mass implies a reduced overall multiplicity of produced hadrons; the increase in $p_{perp}^2$ is local and only affects hadrons in the overlapping region. Starting from the simplest case of two symmetric and parallel strings with massless endpoints, we generalize to progressively more complicated configurations. We present an implementation of this model in the Pythia event generator and use it to illustrate the effects on hadron $p_{perp}$ distributions and dihadron azimuthal correlations, contrasting it with the current version of the shoving model implemented in the same generator.
Background: Nanoscale composition of silk defining its unique properties via a hierarchical structural anisotropy has to be analysed at the highest spatial resolution of tens-of-nanometers corresponding to the size of fibrils made of b-sheets, which are the crystalline building blocks of silk. Results: Nanoscale optical and structural properties of silk have been measured from 100-nm thick longitudinal slices of silk fibers with ~10 nm resolution, the highest so far. Optical sub-wavelength resolution in hyperspectral mapping of absorbance and molecular orientation were carried out for comparison at IR wavelengths 2-10 micrometers using synchrotron radiation. Conclusion: Reliable distinction of transmission changes by only 1-2% due to anisotropy of amide bands was obtained from nano-thin slices of silk.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا