Do you want to publish a course? Click here

The two-loop contributions to muon MDM in $U(1)_X$ SSM

71   0   0.0 ( 0 )
 Added by Lu-Hao Su
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The MSSM is extended to the $U(1)_X$SSM, whose local gauge group is $SU(3)_C times SU(2)_L times U(1)_Y times U(1)_X$. To obtain the $U(1)_X$SSM, we add the new superfields to the MSSM, namely: three Higgs singlets $hat{eta},~hat{bar{eta}},~hat{S}$ and right-handed neutrinos $hat{ u}_i$. It can give light neutrino tiny mass at the tree level through the seesaw mechanism. The study of the contribution of the two-loop diagrams to the MDM of muon under $U(1)_X$SSM provides the possibility for us to search for new physics. In the analytical calculation of the loop diagrams (one-loop and two-loop diagrams), the effective Lagrangian method is used to derive muon MDM. Here, the considered two-loop diagrams include Barr-Zee type diagrams and rainbow type two-loop diagrams, especially Z-Z rainbow two-loop diagram is taken into account. The obtained numerical results can reach $7.4times10^{-10}$, which can remedy the deviation between SM prediction and experimental data to some extent.



rate research

Read More

The new experiment data of muon g-2 is consistent with the previous data of Fermion lab, and the departure from SM prediction is about 4.2 $sigma$. It strengthens our faith in the new physics. $U(1)_X$SSM is the U(1) extension of the minimal supersymmetric standard model, where we study the electroweak corrections to the anomalous magnetic dipole moment of muon from the one loop diagrams and some two loop diagrams possessing important contributions. These two loop diagrams include Barr-Zee type, rainbow type and diamond type. The virtual supersymmetric particles in these two loop diagrams are chargino, scalar neutrino, neutralino, scalar lepton, which are supposed not very heavy to make relatively large corrections. We obtain the Wilson coefficients of the dimension 6 operators inducing the anomalous magnetic dipole moment of muon. The numerical results can reach $25times 10^{-10}$ and even larger.
In the $U(1)_X$ extension of the minimal supersymmetric standard model, we study a two step phase transition for the universe. The first step happens at high temperature from origin to z coordinate axis. The second step is the electroweak phase transition(EWPT) with barrier between two minima, which is the first order EWPT. We study the condition for this type phase transition to occur. The strong first order EWPT is our expection, and with the supposed parameters the evolution of the universe is plotted by the figures.
The experimental data of the magnetic dipole moment(MDM) of lepton($e$, $mu$) is very exact. The deviation between the experimental data and the standard model prediction maybe come from new physics contribution. In the supersymmetric models, there are very many two loop diagrams contributing to the lepton MDM. In supersymmetric models, we suppose two mass scales $M_{SH}$ and $M$ with $M_{SH}gg M$ for supersymmetric particles. Squarks belong to $M_{SH}$ and the other supersymmetric particles belong to $M$. We analyze the order of the contributions from the two loop diagrams. The two loop triangle diagrams corresponding to the two loop self-energy diagram satisfy Ward-identity, and their contributions possess particular factors. This work can help to distinguish the important two loop diagrams giving corrections to lepton MDM.
So far the most sophisticated experiments have shown no trace of new physics at the TeV scale. Consequently, new models with unexplored parameter regions are necessary to explain current results, re-examine the existing data, and propose new experiments. In this Letter, we present a modified version of the $mu u$SSM supersymmetric model where a non-Universal extra U(1) gauge symmetry is added in order to restore an effective R-parity that ensures proton stability. We show that anomalies equations cancel without having to add emph{any} exotic matter, restricting the charges of the fields under the extra symmetry to a discrete set of values. We find that it is the viability of the model through anomalies cancellation what defines the conditions in which fermions interact with dark matter candidates via the exchange of $Z$ bosons. The strict condition of universality violation means that LHC constraints for a $Z$ mass do not apply directly to our model, allowing for a yet undiscovered relatively light $Z$, as we discuss both in the phenomenological context and in its implications for possible flavour changing neutral currents. Moreover, we explore the possibility of isospin violating dark matter interactions; we observe that this interaction depends, surprisingly, on the Higgs charges under the new symmetry, both limiting the number of possible models and allowing to analyse indirect dark matter searches in the light of well defined, particular scenarios.
We consider a process of quasielastic $emu$ large-angle scattering at high energies with radiative corrections up to a two-loop level. A lowest order radiative correction arising both from one-loop virtual photon emission and a real soft emission are presented to a power accuracy. Two-loop level corrections are supposed to be of three gauge-invariant classes. One of them, so called vertex contribution, is given in logarithmic approximation. Relation with the renormalization group approach is discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا