Do you want to publish a course? Click here

A Sampling Type Method in an Electromagnetic Waveguide

76   0   0.0 ( 0 )
 Added by Shixu Meng
 Publication date 2020
and research's language is English
 Authors Shixu Meng




Ask ChatGPT about the research

We propose a sampling type method to image scatterer in an electromagnetic waveguide. The waveguide terminates at one end and the measurements are on the other end and in the far field. The imaging function is based on integrating the measurements and a known function over the measurement surface directly. The design and analysis of such imaging function are based on a factorization of a data operator given by the measurements. We show by analysis that the imaging function peaks inside the scatterer, where the coercivity of the factorized operator and the design of the known function play a central role. Finally, numerical examples are provided to demonstrate the performance of the imaging method.



rate research

Read More

This paper investigates the inverse scattering problems using sampling methods with near field measurements. The near field measurements appear in two classical inverse scattering problems: the inverse scattering for obstacles and the interior inverse scattering for cavities. We propose modified sampling methods to treat these two classical problems using near field measurements without making any asymptotic assumptions on the distance between the measurement surface and the scatterers. We provide theoretical justifications based on the factorization of the near field operator in both symmetric factorization case and non-symmetric factorization case. Furthermore, we introduce a data completion algorithm which allows us to apply the modified sampling methods to treat the limited-aperture inverse scattering problems. Finally numerical examples are provided to illustrate the modified sampling methods with both full- and limited- aperture near field measurements.
101 - H. Haddar , M. K. Riahi 2021
This paper is concerned with Eddy-Current (EC) nondestructive testing of conductive materials and focuses, in particular, on extending the well-known LinearSampling Method (LSM) to the case of EC equations. We first present the theoretical foundation of the LSM in the present context and in the case of point sources. We then explain how this method can be adapted to a realistic setting of EC probes. In the case of identifying the shape of external deposits from impedance measurements taken from inside of the tube (steam generator), we show how the method can be applied to measurements obtained from a sweeping set of coils. Numerical experiments suggest that good results can be achieved using only a few coils and even in the limiting case of backscattering data.
In this paper we present an asymptotically compatible meshfree method for solving nonlocal equations with random coefficients, describing diffusion in heterogeneous media. In particular, the random diffusivity coefficient is described by a finite-dimensional random variable or a truncated combination of random variables with the Karhunen-Lo`{e}ve decomposition, then a probabilistic collocation method (PCM) with sparse grids is employed to sample the stochastic process. On each sample, the deterministic nonlocal diffusion problem is discretized with an optimization-based meshfree quadrature rule. We present rigorous analysis for the proposed scheme and demonstrate convergence for a number of benchmark problems, showing that it sustains the asymptotic compatibility spatially and achieves an algebraic or sub-exponential convergence rate in the random coefficients space as the number of collocation points grows. Finally, to validate the applicability of this approach we consider a randomly heterogeneous nonlocal problem with a given spatial correlation structure, demonstrating that the proposed PCM approach achieves substantial speed-up compared to conventional Monte Carlo simulations.
We propose a controllability method for the numerical solution of time-harmonic Maxwells equations in their first-order formulation. By minimizing a quadratic cost functional, which measures the deviation from periodicity, the controllability method determines iteratively a periodic solution in the time domain. At each conjugate gradient iteration, the gradient of the cost functional is simply computed by running any time-dependent simulation code forward and backward for one period, thus leading to a non-intrusive implementation easily integrated into existing software. Moreover, the proposed algorithm automatically inherits the parallelism, scalability, and low memory footprint of the underlying time-domain solver. Since the time-periodic solution obtained by minimization is not necessarily unique, we apply a cheap post-processing filtering procedure which recovers the time-harmonic solution from any minimizer. Finally, we present a series of numerical examples which show that our algorithm greatly speeds up the convergence towards the desired time-harmonic solution when compared to simply running the time-marching code until the time-harmonic regime is eventually reached.
393 - Vijay Kumar Patel 2021
The present article is devoting a numerical approach for solving a fractional partial differential equation (FPDE) arising from electromagnetic waves in dielectric media (EMWDM). The truncated Bernoulli and Hermite wavelets series with unknown coefficients have been used to approximate the solution in both the temporal and spatial variables. The basic idea for discretizing the FPDE is wavelet approximation based on the Bernoulli and Hermite wavelets operational matrices of integration and differentiation. The resulted system of a linear algebraic equation has been solved by the collocation method. Moreover, convergence and error analysis have been discussed. Finally, several numerical experiments with different fractional-order derivatives have been provided and compared with the exact analytical solutions to illustrate the accuracy and efficiency of the method.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا