No Arabic abstract
Deep neural networks trained with standard cross-entropy loss memorize noisy labels, which degrades their performance. Most research to mitigate this memorization proposes new robust classification loss functions. Conversely, we propose a Multi-Objective Interpolation Training (MOIT) approach that jointly exploits contrastive learning and classification to mutually help each other and boost performance against label noise. We show that standard supervised contrastive learning degrades in the presence of label noise and propose an interpolation training strategy to mitigate this behavior. We further propose a novel label noise detection method that exploits the robust feature representations learned via contrastive learning to estimate per-sample soft-labels whose disagreements with the original labels accurately identify noisy samples. This detection allows treating noisy samples as unlabeled and training a classifier in a semi-supervised manner to prevent noise memorization and improve representation learning. We further propose MOIT+, a refinement of MOIT by fine-tuning on detected clean samples. Hyperparameter and ablation studies verify the key components of our method. Experiments on synthetic and real-world noise benchmarks demonstrate that MOIT/MOIT+ achieves state-of-the-art results. Code is available at https://git.io/JI40X.
Large datasets in NLP suffer from noisy labels, due to erroneous automatic and human annotation procedures. We study the problem of text classification with label noise, and aim to capture this noise through an auxiliary noise model over the classifier. We first assign a probability score to each training sample of having a noisy label, through a beta mixture model fitted on the losses at an early epoch of training. Then, we use this score to selectively guide the learning of the noise model and classifier. Our empirical evaluation on two text classification tasks shows that our approach can improve over the baseline accuracy, and prevent over-fitting to the noise.
Learning with noisy labels is a practically challenging problem in weakly supervised learning. In the existing literature, open-set noises are always considered to be poisonous for generalization, similar to closed-set noises. In this paper, we empir
Convolutional Neural Network (CNN) has demonstrated promising performance in single-label image classification tasks. However, how CNN best copes with multi-label images still remains an open problem, mainly due to the complex underlying object layouts and insufficient multi-label training images. In this work, we propose a flexible deep CNN infrastructure, called Hypotheses-CNN-Pooling (HCP), where an arbitrary number of object segment hypotheses are taken as the inputs, then a shared CNN is connected with each hypothesis, and finally the CNN output results from different hypotheses are aggregated with max pooling to produce the ultimate multi-label predictions. Some unique characteristics of this flexible deep CNN infrastructure include: 1) no ground truth bounding box information is required for training; 2) the whole HCP infrastructure is robust to possibly noisy and/or redundant hypotheses; 3) no explicit hypothesis label is required; 4) the shared CNN may be well pre-trained with a large-scale single-label image dataset, e.g. ImageNet; and 5) it may naturally output multi-label prediction results. Experimental results on Pascal VOC2007 and VOC2012 multi-label image datasets well demonstrate the superiority of the proposed HCP infrastructure over other state-of-the-arts. In particular, the mAP reaches 84.2% by HCP only and 90.3% after the fusion with our complementary result in [47] based on hand-crafted features on the VOC2012 dataset, which significantly outperforms the state-of-the-arts with a large margin of more than 7%.
One property that remains lacking in image captions generated by contemporary methods is discriminability: being able to tell two images apart given the caption for one of them. We propose a way to improve this aspect of caption generation. By incorporating into the captioning training objective a loss component directly related to ability (by a machine) to disambiguate image/caption matches, we obtain systems that produce much more discriminative caption, according to human evaluation. Remarkably, our approach leads to improvement in other aspects of generated captions, reflected by a battery of standard scores such as BLEU, SPICE etc. Our approach is modular and can be applied to a variety of model/loss combinations commonly proposed for image captioning.
While existing work in robust deep learning has focused on small pixel-level norm-based perturbations, this may not account for perturbations encountered in several real-world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.