Sea ice growth with lamellar microstructure containing brine channels has been extensively investigated. However, the quantitative growth information of sea ice remains lack due to the uncontrolled crystalline orientation in previous investigations. For the first time, we in-situ observed the unidirectional growth of lamellar sea ice with well-manipulated ice crystal orientation and visualized tip undercooling of sea ice. A semi-empirical model was proposed to quantitatively address the variation of tip undercooling with growth velocity and salinity and compared with a very recent analytical model. With the real-time observation, interesting phenomena of doublon tip in cellular ice growth and growth direction shift of ice dendritic tip were discovered for the first time, which are attributed to the complex solutal diffusion and anisotropic interface kinetics in sea ice growth. The quantitative experiment provides a clear micro scenario of sea ice growth, and will promote relevant investigations of sea ice in terms of the theoretical approach to describing the diffusion field around faceted ice dendritic tip.